Given a binary tree containing digits from 0-9
only,
each root-to-leaf path could represent a number.
An example is the root-to-leaf path 1->2->3
which
represents the number 123
.
Find the total sum of all root-to-leaf numbers.
For example,
1 / 2 3
The root-to-leaf path 1->2
represents the
number 12
.
The root-to-leaf path 1->3
represents the number 13
.
Return the sum = 12 + 13 = 25
.
这道题要我们找出从根节点到所有叶子节点的十进制数字的和,属于很基础的树的遍历题。
解法一:
使用DFS从根节点开始遍历树,在从上到下搜索过程中记录当前十进制数字,当到达一个叶子节点时,累加到总和中。
递归问题要注意何时结束递归。
/** * Definition for binary tree * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ class Solution { public: int sumNumbers(TreeNode *root) { sum = 0; recursiveSum(root, 0); return sum; } private: int sum; void recursiveSum(TreeNode *root, int curSum) { if (NULL == root) { return; } curSum = curSum * 10 + root->val; if (NULL == root->left && NULL == root->right) { sum += curSum; } recursiveSum(root->left, curSum); recursiveSum(root->right, curSum); } };
这样的遍历问题也可以使用非递归的方法,常用C++ queue容器存储队列元素,先进先出,从根节点遍历过程中按层次把
节点信息加入队列中,要注意到达叶子节点的操作。
/** * Definition for binary tree * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ class Solution { public: int sumNumbers(TreeNode *root) { if (NULL == root) { return 0; } int sum = 0; queue<NodeInfo> q; q.push(NodeInfo(root->val, root)); while (!q.empty()) { NodeInfo ni = q.front(); q.pop(); // when it is a left node if (NULL == ni.nodePtr->left && NULL == ni.nodePtr->right) { sum += ni.pathNum; continue; } if (ni.nodePtr->left != NULL) { q.push(NodeInfo(ni.pathNum * 10 + ni.nodePtr->left->val, ni.nodePtr->left)); } if (ni.nodePtr->right != NULL) { q.push(NodeInfo(ni.pathNum * 10 + ni.nodePtr->right->val, ni.nodePtr->right)); } } return sum; } private: typedef struct NodeInfo { int pathNum; TreeNode *nodePtr; NodeInfo(int _pathNum, TreeNode *_nodePtr) { pathNum = _pathNum; nodePtr = _nodePtr; } }NodeInfo; };
原文:http://blog.csdn.net/freeliao/article/details/40958265