首页 > 其他 > 详细

POJ 2553 The Bottom of a Graph

时间:2014-11-13 23:42:47      阅读:505      评论:0      收藏:0      [点我收藏+]

The Bottom of a Graph

Time Limit: 3000ms
Memory Limit: 65536KB
This problem will be judged on PKU. Original ID: 2553
64-bit integer IO format: %lld      Java class name: Main
 
We will use the following (standard) definitions from graph theory. Let V be a nonempty and finite set, its elements being called vertices (or nodes). Let E be a subset of the Cartesian product V×V, its elements being called edges. Then G=(V,E) is called a directed graph. 
Let n be a positive integer, and let p=(e1,...,en) be a sequence of length n of edges ei∈E such that ei=(vi,vi+1) for a sequence of vertices (v1,...,vn+1). Then p is called a path from vertex v1 to vertex vn+1 in G and we say that vn+1 is reachable from v1, writing (v1→vn+1)
Here are some new definitions. A node v in a graph G=(V,E) is called a sink, if for every node w in G that is reachable from vv is also reachable from w. The bottom of a graph is the subset of all nodes that are sinks, i.e., bottom(G)={v∈V|∀w∈V:(v→w)⇒(w→v)}. You have to calculate the bottom of certain graphs.
 

Input

The input contains several test cases, each of which corresponds to a directed graph G. Each test case starts with an integer number v, denoting the number of vertices of G=(V,E), where the vertices will be identified by the integer numbers in the set V={1,...,v}. You may assume that 1<=v<=5000. That is followed by a non-negative integer e and, thereafter, epairs of vertex identifiers v1,w1,...,ve,we with the meaning that (vi,wi)∈E. There are no edges other than specified by these pairs. The last test case is followed by a zero.
 

Output

For each test case output the bottom of the specified graph on a single line. To this end, print the numbers of all nodes that are sinks in sorted order separated by a single space character. If the bottom is empty, print an empty line.bubuko.com,布布扣
 

Sample Input

3 3
1 3 2 3 3 1
2 1
1 2
0

Sample Output

1 3
2

Source

 
解题:求这样的点,它能到的点,那点也可以到它,注意先后顺序。然后求强联通缩点,出度为0的集合,里面的点即为我们求得那些点
 
bubuko.com,布布扣
 1 #include <iostream>
 2 #include <cstdio>
 3 #include <cstring>
 4 #include <cmath>
 5 #include <algorithm>
 6 #include <climits>
 7 #include <vector>
 8 #include <queue>
 9 #include <cstdlib>
10 #include <string>
11 #include <set>
12 #include <stack>
13 #define LL long long
14 #define pii pair<int,int>
15 #define INF 0x3f3f3f3f
16 using namespace std;
17 const int maxn = 6000;
18 struct arc {
19     int to,next;
20     arc(int x = 0,int y = -1) {
21         to = x;
22         next = y;
23     }
24 };
25 arc e[maxn*100];
26 int head[maxn],dfn[maxn],low[maxn],belong[maxn],my[maxn];
27 int tot,n,m,top,scc,idx,out[maxn],ans[maxn];
28 bool instack[maxn];
29 void init() {
30     for(int i = 0; i < maxn; ++i) {
31         dfn[i] = low[i] = belong[i] = 0;
32         instack[i] = false;
33         head[i] = -1;
34         out[i] = 0;
35     }
36     scc = tot = idx = top = 0;
37 }
38 void add(int u,int v){
39     e[tot] = arc(v,head[u]);
40     head[u] = tot++;
41 }
42 void tarjan(int u) {
43     dfn[u] = low[u] = ++idx;
44     my[top++] = u;
45     instack[u] = true;
46     for(int i = head[u]; ~i; i = e[i].next) {
47         if(!dfn[e[i].to]) {
48             tarjan(e[i].to);
49             low[u] = min(low[u],low[e[i].to]);
50         } else if(instack[e[i].to]) low[u] = min(low[u],dfn[e[i].to]);
51     }
52     if(dfn[u] == low[u]) {
53         scc++;
54         int v;
55         do {
56             v = my[--top];
57             instack[v] = false;
58             belong[v] = scc;
59         } while(v != u);
60     }
61 }
62 int main() {
63     int u,v;
64     while(~scanf("%d",&n)&&n) {
65         scanf("%d",&m);
66         init();
67         for(int i = 0; i < m; ++i) {
68             scanf("%d%d",&u,&v);
69             add(u,v);
70         }
71         for(int i = 1; i <= n; ++i)
72             if(!dfn[i]) tarjan(i);
73         for(int i = 1; i <= n; ++i)
74             for(int j = head[i]; ~j; j = e[j].next)
75                 if(belong[i] != belong[e[j].to]) out[belong[i]]++;
76         int cnt = 0;
77         for(int i = 1; i <= n; ++i)
78             if(!out[belong[i]]) ans[cnt++] = i;
79         if(cnt){
80             for(int i = 0; i < cnt; ++i)
81                 printf("%d%c",ans[i],i + 1 == cnt?\n: );
82         }else puts("");
83     }
84     return 0;
85 }
View Code

 

POJ 2553 The Bottom of a Graph

原文:http://www.cnblogs.com/crackpotisback/p/4095991.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!