首页 > 其他 > 详细

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.1.1

时间:2014-11-16 12:00:11      阅读:274      评论:0      收藏:0      [点我收藏+]

Given any $k$-tupel of linearly independent vectors $X$ as above, there exists a $k$-tuple $Y$ biorthognal to it. If $k=n$, this $Y$ is unique.

 

解答: Since $$\bex \rank(X^*X)=\rank(X)=k, \eex$$ there exists an unique $A\in M_k$ such that $$\bex X^*XA=I_k. \eex$$ Take $Y=XA$, we are completed. 

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.1.1

原文:http://www.cnblogs.com/zhangzujin/p/4101238.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!