首页 > 其他 > 详细

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.4

时间:2014-11-21 10:22:07      阅读:246      评论:0      收藏:0      [点我收藏+]

If $\dim \scrH=3$, then $\dim \otimes^3\scrH =27$, $\dim \wedge^3\scrH =1$ and $\dim \vee^3\scrH =10$. In terms of an orthonormal basis of $\scrH$, write an element of $(\wedge^3\scrH )\oplus \vee^3\scrH)^\perp$.

 

Solution. Let $e_1,e_2,e_3$ be an orthonormal basis of $\scrH$, then $$\bex e_1\otimes e_1\otimes e_1-e_1\otimes e_1\otimes e_2\in (\wedge^3\scrH )\oplus \vee^3\scrH)^\perp. \eex$$

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.4

原文:http://www.cnblogs.com/zhangzujin/p/4112012.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!