首页 > 其他 > 详细

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

时间:2014-11-22 17:23:39      阅读:247      评论:0      收藏:0      [点我收藏+]

Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$, $1\leq j\leq k$, can be found so that $a_{ij}=\sef{x_i,x_j}$ for all $i,j$.

 

Solution. By Exercise I.2.2, $A=B^*B$ for some $B$. Let $$\bex B=(x_1,\cdots,x_k). \eex$$ Then $$\bex A=\sex{\sef{x_i,x_j}}. \eex$$

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

原文:http://www.cnblogs.com/zhangzujin/p/4115285.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!