首页 > 其他 > 详细

Nouveau源码分析(六):NVIDIA设备初始化之nouveau_drm_load (3)

时间:2014-11-22 23:08:50      阅读:429      评论:0      收藏:0      [点我收藏+]

Nouveau源码分析(六)

上一篇中我们暂时忽略了两个函数,第一个是用于创建nvif_device对应的nouveau_object的ctor函数:
// /drivers/gpu/drm/nouveau/core/engine/device/base.c
488 static struct nouveau_ofuncs
489 nouveau_devobj_ofuncs = {
490         .ctor = nouveau_devobj_ctor,
491         .dtor = nouveau_devobj_dtor,
492         .init = _nouveau_parent_init,
493         .fini = _nouveau_parent_fini,
494         .mthd = nouveau_devobj_mthd,
495 };
也就是对应的nouveau_devobj_ctor,这个函数的主要功能就是识别NVIDIA设备类型,然后初始化每一个subdev.
// /drivers/gpu/drm/nouveau/core/engine/device/base.c
274 static int
275 nouveau_devobj_ctor(struct nouveau_object *parent,
276                     struct nouveau_object *engine,
277                     struct nouveau_oclass *oclass, void *data, u32 size,
278                     struct nouveau_object **pobject)
279 {
280         union {
281                 struct nv_device_v0 v0;
282         } *args = data;
283         struct nouveau_client *client = nv_client(parent);
284         struct nouveau_device *device;
285         struct nouveau_devobj *devobj;
286         u32 boot0, strap;
287         u64 disable, mmio_base, mmio_size;
288         void __iomem *map;
289         int ret, i, c;
290 
291         nv_ioctl(parent, "create device size %d\n", size);
292         if (nvif_unpack(args->v0, 0, 0, false)) {
293                 nv_ioctl(parent, "create device v%d device %016llx "
294                                  "disable %016llx debug0 %016llx\n",
295                          args->v0.version, args->v0.device,
296                          args->v0.disable, args->v0.debug0);
297         } else
298                 return ret;
299 
300         /* give priviledged clients register access */
301         if (client->super)
302                 oclass = &nouveau_devobj_oclass_super;
303 
304         /* find the device subdev that matches what the client requested */
305         device = nv_device(client->device);
306         if (args->v0.device != ~0) {
307                 device = nouveau_device_find(args->v0.device);
308                 if (!device)
309                         return -ENODEV;
310         }
311 
312         ret = nouveau_parent_create(parent, nv_object(device), oclass, 0,
313                                     nouveau_control_oclass,
314                                     (1ULL << NVDEV_ENGINE_DMAOBJ) |
315                                     (1ULL << NVDEV_ENGINE_FIFO) |
316                                     (1ULL << NVDEV_ENGINE_DISP) |
317                                     (1ULL << NVDEV_ENGINE_PERFMON), &devobj);
318         *pobject = nv_object(devobj);
319         if (ret)
320                 return ret;
321 
322         mmio_base = nv_device_resource_start(device, 0);
323         mmio_size = nv_device_resource_len(device, 0);
324 
325         /* translate api disable mask into internal mapping */
326         disable = args->v0.debug0;
327         for (i = 0; i < NVDEV_SUBDEV_NR; i++) {
328                 if (args->v0.disable & disable_map[i])
329                         disable |= (1ULL << i);
330         }
331 
332         /* identify the chipset, and determine classes of subdev/engines */
333         if (!(args->v0.disable & NV_DEVICE_V0_DISABLE_IDENTIFY) &&
334             !device->card_type) {
335                 map = ioremap(mmio_base, 0x102000);
336                 if (map == NULL)
337                         return -ENOMEM;
338 
339                 /* switch mmio to cpu's native endianness */
340 #ifndef __BIG_ENDIAN
341                 if (ioread32_native(map + 0x000004) != 0x00000000)
342 #else
343                 if (ioread32_native(map + 0x000004) == 0x00000000)
344 #endif
345                         iowrite32_native(0x01000001, map + 0x000004);
346 
347                 /* read boot0 and strapping information */
348                 boot0 = ioread32_native(map + 0x000000);
349                 strap = ioread32_native(map + 0x101000);
350                 iounmap(map);
351 
352                 /* determine chipset and derive architecture from it */
353                 if ((boot0 & 0x1f000000) > 0) {
354                         device->chipset = (boot0 & 0x1ff00000) >> 20;
355                         switch (device->chipset & 0x1f0) {
356                         case 0x010: {
357                                 if (0x461 & (1 << (device->chipset & 0xf)))
358                                         device->card_type = NV_10;
359                                 else
360                                         device->card_type = NV_11;
361                                 break;
362                         }
363                         case 0x020: device->card_type = NV_20; break;
364                         case 0x030: device->card_type = NV_30; break;
365                         case 0x040:
366                         case 0x060: device->card_type = NV_40; break;
367                         case 0x050:
368                         case 0x080:
369                         case 0x090:
370                         case 0x0a0: device->card_type = NV_50; break;
371                         case 0x0c0:
372                         case 0x0d0: device->card_type = NV_C0; break;
373                         case 0x0e0:
374                         case 0x0f0:
375                         case 0x100: device->card_type = NV_E0; break;
376                         case 0x110: device->card_type = GM100; break;
377                         default:
378                                 break;
379                         }
380                 } else
381                 if ((boot0 & 0xff00fff0) == 0x20004000) {
382                         if (boot0 & 0x00f00000)
383                                 device->chipset = 0x05;
384                         else
385                                 device->chipset = 0x04;
386                         device->card_type = NV_04;
387                 }
388 
389                 switch (device->card_type) {
390                 case NV_04: ret = nv04_identify(device); break;
391                 case NV_10:
392                 case NV_11: ret = nv10_identify(device); break;
393                 case NV_20: ret = nv20_identify(device); break;
394                 case NV_30: ret = nv30_identify(device); break;
395                 case NV_40: ret = nv40_identify(device); break;
396                 case NV_50: ret = nv50_identify(device); break;
397                 case NV_C0: ret = nvc0_identify(device); break;
398                 case NV_E0: ret = nve0_identify(device); break;
399                 case GM100: ret = gm100_identify(device); break;
400                 default:
401                         ret = -EINVAL;
402                         break;
403                 }
404 
405                 if (ret) {
406                         nv_error(device, "unknown chipset, 0x%08x\n", boot0);
407                         return ret;
408                 }
409 
410                 nv_info(device, "BOOT0  : 0x%08x\n", boot0);
411                 nv_info(device, "Chipset: %s (NV%02X)\n",
412                         device->cname, device->chipset);
413                 nv_info(device, "Family : NV%02X\n", device->card_type);
414 
415                 /* determine frequency of timing crystal */
416                 if ( device->card_type <= NV_10 || device->chipset < 0x17 ||
417                     (device->chipset >= 0x20 && device->chipset < 0x25))
418                         strap &= 0x00000040;
419                 else
420                         strap &= 0x00400040;
421 
422                 switch (strap) {
423                 case 0x00000000: device->crystal = 13500; break;
424                 case 0x00000040: device->crystal = 14318; break;
425                 case 0x00400000: device->crystal = 27000; break;
426                 case 0x00400040: device->crystal = 25000; break;
427                 }
428 
429                 nv_debug(device, "crystal freq: %dKHz\n", device->crystal);
430         }
431 
432         if (!(args->v0.disable & NV_DEVICE_V0_DISABLE_MMIO) &&
433             !nv_subdev(device)->mmio) {
434                 nv_subdev(device)->mmio  = ioremap(mmio_base, mmio_size);
435                 if (!nv_subdev(device)->mmio) {
436                         nv_error(device, "unable to map device registers\n");
437                         return -ENOMEM;
438                 }
439         }
440 
441         /* ensure requested subsystems are available for use */
442         for (i = 1, c = 1; i < NVDEV_SUBDEV_NR; i++) {
443                 if (!(oclass = device->oclass[i]) || (disable & (1ULL << i)))
444                         continue;
445 
446                 if (device->subdev[i]) {
447                         nouveau_object_ref(device->subdev[i],
448                                           &devobj->subdev[i]);
449                         continue;
450                 }
451 
452                 ret = nouveau_object_ctor(nv_object(device), NULL,
453                                           oclass, NULL, i,
454                                           &devobj->subdev[i]);
455                 if (ret == -ENODEV)
456                         continue;
457                 if (ret)
458                         return ret;
459 
460                 device->subdev[i] = devobj->subdev[i];
461 
462                 /* note: can't init *any* subdevs until devinit has been run
463                  * due to not knowing exactly what the vbios init tables will
464                  * mess with.  devinit also can't be run until all of its
465                  * dependencies have been created.
466                  *
467                  * this code delays init of any subdev until all of devinit's
468                  * dependencies have been created, and then initialises each
469                  * subdev in turn as they're created.
470                  */
471                 while (i >= NVDEV_SUBDEV_DEVINIT_LAST && c <= i) {
472                         struct nouveau_object *subdev = devobj->subdev[c++];
473                         if (subdev && !nv_iclass(subdev, NV_ENGINE_CLASS)) {
474                                 ret = nouveau_object_inc(subdev);
475                                 if (ret)
476                                         return ret;
477                                 atomic_dec(&nv_object(device)->usecount);
478                         } else
479                         if (subdev) {
480                                 nouveau_subdev_reset(subdev);
481                         }
482                 }
483         }
484 
485         return 0;
486 }
第292行,首先检查参数的正确性,输出一些调试信息.
第302行,给有特权的client使用nouveau_devobj_oclass_super,这个与默认的nouveau_devobj_oclass的不同就是可以直接进行寄存器读写.
第305行,获取对应的device,如果特别指定了就从链表中查找指定的device.
第312行,创建这个devobj,其中几个参数简单说一下:
nouveau_control_oclass: 这个是作为sclass进去的,和sysfs有关. Nouveau初始化sysfs时候会创建一个nvif_object,这个时候会用到这个sclass.
(1ULL << NVDEV_ENGINE_DMAOBJ) | (1ULL << NVDEV_ENGINE_FIFO) | (1ULL << NVDEV_ENGINE_DISP) | (1ULL << NVDEV_ENGINE_PERFMON):
这个是作为engcls传送进去的,表示可以用来完成u32 oclass转换的subdev.
第223行,获取NVIDIA的MMIO地址和长度.
第327行,获取禁用的subdev.
// /drivers/gpu/drm/nouveau/core/engine/device/base.c
206 static const u64 disable_map[] = {
207         [NVDEV_SUBDEV_VBIOS]    = NV_DEVICE_V0_DISABLE_VBIOS,
208         [NVDEV_SUBDEV_DEVINIT]  = NV_DEVICE_V0_DISABLE_CORE,
209         [NVDEV_SUBDEV_GPIO]     = NV_DEVICE_V0_DISABLE_CORE,
210         [NVDEV_SUBDEV_I2C]      = NV_DEVICE_V0_DISABLE_CORE,
211         [NVDEV_SUBDEV_CLOCK]    = NV_DEVICE_V0_DISABLE_CORE,
212         [NVDEV_SUBDEV_MXM]      = NV_DEVICE_V0_DISABLE_CORE,
213         [NVDEV_SUBDEV_MC]       = NV_DEVICE_V0_DISABLE_CORE,
214         [NVDEV_SUBDEV_BUS]      = NV_DEVICE_V0_DISABLE_CORE,
215         [NVDEV_SUBDEV_TIMER]    = NV_DEVICE_V0_DISABLE_CORE,
216         [NVDEV_SUBDEV_FB]       = NV_DEVICE_V0_DISABLE_CORE,
217         [NVDEV_SUBDEV_LTC]      = NV_DEVICE_V0_DISABLE_CORE,
218         [NVDEV_SUBDEV_IBUS]     = NV_DEVICE_V0_DISABLE_CORE,
219         [NVDEV_SUBDEV_INSTMEM]  = NV_DEVICE_V0_DISABLE_CORE,
220         [NVDEV_SUBDEV_VM]       = NV_DEVICE_V0_DISABLE_CORE,
221         [NVDEV_SUBDEV_BAR]      = NV_DEVICE_V0_DISABLE_CORE,
222         [NVDEV_SUBDEV_VOLT]     = NV_DEVICE_V0_DISABLE_CORE,
223         [NVDEV_SUBDEV_THERM]    = NV_DEVICE_V0_DISABLE_CORE,
224         [NVDEV_SUBDEV_PWR]      = NV_DEVICE_V0_DISABLE_CORE,
225         [NVDEV_ENGINE_DMAOBJ]   = NV_DEVICE_V0_DISABLE_CORE,
226         [NVDEV_ENGINE_PERFMON]  = NV_DEVICE_V0_DISABLE_CORE,
227         [NVDEV_ENGINE_FIFO]     = NV_DEVICE_V0_DISABLE_FIFO,
228         [NVDEV_ENGINE_SW]       = NV_DEVICE_V0_DISABLE_FIFO,
229         [NVDEV_ENGINE_GR]       = NV_DEVICE_V0_DISABLE_GRAPH,
230         [NVDEV_ENGINE_MPEG]     = NV_DEVICE_V0_DISABLE_MPEG,
231         [NVDEV_ENGINE_ME]       = NV_DEVICE_V0_DISABLE_ME,
232         [NVDEV_ENGINE_VP]       = NV_DEVICE_V0_DISABLE_VP,
233         [NVDEV_ENGINE_CRYPT]    = NV_DEVICE_V0_DISABLE_CRYPT,
234         [NVDEV_ENGINE_BSP]      = NV_DEVICE_V0_DISABLE_BSP,
235         [NVDEV_ENGINE_PPP]      = NV_DEVICE_V0_DISABLE_PPP,
236         [NVDEV_ENGINE_COPY0]    = NV_DEVICE_V0_DISABLE_COPY0,
237         [NVDEV_ENGINE_COPY1]    = NV_DEVICE_V0_DISABLE_COPY1,
238         [NVDEV_ENGINE_VIC]      = NV_DEVICE_V0_DISABLE_VIC,
239         [NVDEV_ENGINE_VENC]     = NV_DEVICE_V0_DISABLE_VENC,
240         [NVDEV_ENGINE_DISP]     = NV_DEVICE_V0_DISABLE_DISP,
241         [NVDEV_SUBDEV_NR]       = 0,
242 };
也就是说把传进来的禁用列表转换成要禁用的具体subdev列表.
第333行,如果没有禁用识别NVIDIA设备类型,而且这个设备还没有被识别过设备类型,那么此处就要进行识别.
第335行,首先映射一下MMIO空间.
第345行,这里可以看注释. 切换MMIO空间的端模式到CPU的端模式. [大端/小端]
第348行和第349行,读取NVIDIA的寄存器. 要是NVIDIA能开放一点的话,或许我们现在可以把spec拿出来看看.
但我们通过读代码还是能知道这两个寄存器的格式以及储存的信息. boot0储存显卡的种类,strap储存晶振频率. [石英晶体谐振器]
第350行,把MMIO空间取消映射.
第353到387行,从boot0中获取显卡的Chipset和Family,没什么好说的. 
接下来,第389行到403行,调用对应显卡Family的identity函数,因为我的显卡是NVD9,对应的family是NVC0,所以以后就拿这个来分析具体与设备相关的东西了.
// /drivers/gpu/drm/nouveau/core/engine/device/nvc0.c
 56 int
 57 nvc0_identify(struct nouveau_device *device)
 58 {
 59         switch (device->chipset) {
		//此处省略一万字.......
282         case 0xd9:
283                 device->cname = "GF119";
284                 device->oclass[NVDEV_SUBDEV_VBIOS  ] = &nouveau_bios_oclass;
285                 device->oclass[NVDEV_SUBDEV_GPIO   ] =  nvd0_gpio_oclass;
286                 device->oclass[NVDEV_SUBDEV_I2C    ] =  nvd0_i2c_oclass;
287                 device->oclass[NVDEV_SUBDEV_CLOCK  ] = &nvc0_clock_oclass;
288                 device->oclass[NVDEV_SUBDEV_THERM  ] = &nvd0_therm_oclass;
289                 device->oclass[NVDEV_SUBDEV_MXM    ] = &nv50_mxm_oclass;
290                 device->oclass[NVDEV_SUBDEV_DEVINIT] =  nvc0_devinit_oclass;
291                 device->oclass[NVDEV_SUBDEV_MC     ] =  nvc3_mc_oclass;
292                 device->oclass[NVDEV_SUBDEV_BUS    ] =  nvc0_bus_oclass;
293                 device->oclass[NVDEV_SUBDEV_TIMER  ] = &nv04_timer_oclass;
294                 device->oclass[NVDEV_SUBDEV_FB     ] =  nvc0_fb_oclass;
295                 device->oclass[NVDEV_SUBDEV_LTC    ] =  gf100_ltc_oclass;
296                 device->oclass[NVDEV_SUBDEV_IBUS   ] = &nvc0_ibus_oclass;
297                 device->oclass[NVDEV_SUBDEV_INSTMEM] =  nv50_instmem_oclass;
298                 device->oclass[NVDEV_SUBDEV_VM     ] = &nvc0_vmmgr_oclass;
299                 device->oclass[NVDEV_SUBDEV_BAR    ] = &nvc0_bar_oclass;
300                 device->oclass[NVDEV_SUBDEV_PWR    ] =  nvd0_pwr_oclass;
301                 device->oclass[NVDEV_SUBDEV_VOLT   ] = &nv40_volt_oclass;
302                 device->oclass[NVDEV_ENGINE_DMAOBJ ] =  nvd0_dmaeng_oclass;
303                 device->oclass[NVDEV_ENGINE_FIFO   ] =  nvc0_fifo_oclass;
304                 device->oclass[NVDEV_ENGINE_SW     ] =  nvc0_software_oclass;
305                 device->oclass[NVDEV_ENGINE_GR     ] =  nvd9_graph_oclass;
306                 device->oclass[NVDEV_ENGINE_VP     ] = &nvc0_vp_oclass;
307                 device->oclass[NVDEV_ENGINE_BSP    ] = &nvc0_bsp_oclass;
308                 device->oclass[NVDEV_ENGINE_PPP    ] = &nvc0_ppp_oclass;
309                 device->oclass[NVDEV_ENGINE_COPY0  ] = &nvc0_copy0_oclass;
310                 device->oclass[NVDEV_ENGINE_DISP   ] =  nvd0_disp_oclass;
311                 device->oclass[NVDEV_ENGINE_PERFMON] = &nvc0_perfmon_oclass;
312                 break;
		//此处省略一万字.......
342         default:
343                 nv_fatal(device, "unknown Fermi chipset\n");
344                 return -EINVAL;
345         }
346 
347         return 0;
348         }
349 
对于每一个chipset都有这么一堆赋值函数,所以不再都列出来,只关心NVD9这个例子.
很明显这个函数的作用是初始化device->oclass,等会就会对每一个oclass使用nouveau_object_ctor创建一个object,并储存到devobj->subdev和device->subdev里.

回到nouveau_devobj_ctor,下面先检查ret,然后打印调试信息.
第416行,根据设备类型适当mask刚刚读取的strap.
第422行,根据strap的值,确定石英晶体谐振器的频率,并储存到device的一个字段里.
紧接着退出识别设备类型的if语句,下面第434行,初始化device的mmio空间.
然后第442行,初始化每一个subdev. 这个for循环本身并不大,但它会执行刚刚在identity函数里初始化的所有oclass的ctor和init函数,所以.......

第443行,首先检查这个subdev是否已经被禁用了,或者根本没有对应的oclass,如果这样的话直接进行下一次循环.
第446行,检查这个subdev是否已经被创建过,如果这样的话直接把它ref一遍就行了.
第452行,使用nouveau_object_ctor创建这个subdev,也就是调用这个oclass的ctor函数指针.
第460行,本来这个地方是要使用nouveau_object_inc来调用oclass里的init函数指针的,但是为什么要这样写呢?
首先,这里有一个名叫DEVINIT的subdev,这个subdev的init函数将会使用两个[在NVDEV_SUBDEV_DEVINIT和NVDEV_SUBDEV_DEVINIT_LAST之间的]必须被创建,但又不能被提前init的subdev.
如果此处直接执行这个subdev的init函数,那么就不可能出现一个已经被创建但没有被init的subdev了.
所以这个while循环,保证先创建但不init所有NVDEV_SUBDEV_DEVINIT_LAST之前的subdev,等到已经过了这个NVDEV_SUBDEV_DEVINIT_LAST后,再init所有之前创建过的subdev. 当然对于之后的subdev,则都是创建了立即init的.
[建议参考此处的注释,/drivers/gpu/drm/nouveau/core/include/core/device.h里的注释,以及具体代码来理解.]

由于这些ctor/init函数加起来实在太长,可能要连续说几篇才能说完,所以暂且先来看上一篇中我们忽略的另一个函数吧. 调用的位置:
// /drivers/gpu/drm/nouveau/nvif/device.c
 33 int
 34 nvif_device_init(struct nvif_object *parent, void (*dtor)(struct nvif_device *),
 35                  u32 handle, u32 oclass, void *data, u32 size,
 36                  struct nvif_device *device)
 37 {
 38         int ret = nvif_object_init(parent, (void *)dtor, handle, oclass,
 39                                    data, size, &device->base);
 40         if (ret == 0) {
 41                 device->object = &device->base;
 42                 device->info.version = 0;
 43                 ret = nvif_object_mthd(&device->base, NV_DEVICE_V0_INFO,
 44                                        &device->info, sizeof(device->info));
 45         }
 46         return ret;
 47 }
第43行,使用mthd获取设备的基本信息,并储存到device->info里.
// /drivers/gpu/drm/nouveau/nvif/object.c
115 int
116 nvif_object_mthd(struct nvif_object *object, u32 mthd, void *data, u32 size)
117 {
118         struct {
119                 struct nvif_ioctl_v0 ioctl;
120                 struct nvif_ioctl_mthd_v0 mthd;
121         } *args;
122         u8 stack[128];
123         int ret;
124 
125         if (sizeof(*args) + size > sizeof(stack)) {
126                 if (!(args = kmalloc(sizeof(*args) + size, GFP_KERNEL)))
127                         return -ENOMEM;
128         } else {
129                 args = (void *)stack;
130         }
131         args->ioctl.version = 0;
132         args->ioctl.type = NVIF_IOCTL_V0_MTHD;
133         args->mthd.version = 0;
134         args->mthd.method = mthd;
135 
136         memcpy(args->mthd.data, data, size);
137         ret = nvif_object_ioctl(object, args, sizeof(*args) + size, NULL);
138         memcpy(data, args->mthd.data, size);
139         if (args != (void *)stack)
140                 kfree(args);
141         return ret;
142 }
首先检查需要的空间,如果在一定范围之内就使用栈里的,不然kmalloc分配内存.
第131行到第134行,初始化几个字段,主要描述了请求的版本信息和请求的类型种类.
第136行和第138行是对称的,前者把data复制进args->mthd.data,后者则把args->mthd.data复制到data里去.
中间夹着的137行就是核心代码了,这个nvif_object_ioctl我们以前分析过,这里直接看:
// /drivers/gpu/drm/nouveau/core/core/ioctl.c
439 static struct {
440         int version;
441         int (*func)(struct nouveau_handle *, void *, u32);
442 }
443 nvkm_ioctl_v0[] = {
444         { 0x00, nvkm_ioctl_nop },
445         { 0x00, nvkm_ioctl_sclass },
446         { 0x00, nvkm_ioctl_new },
447         { 0x00, nvkm_ioctl_del },
448         { 0x00, nvkm_ioctl_mthd },
449         { 0x00, nvkm_ioctl_rd },
450         { 0x00, nvkm_ioctl_wr },
451         { 0x00, nvkm_ioctl_map },
452         { 0x00, nvkm_ioctl_unmap },
453         { 0x00, nvkm_ioctl_ntfy_new },
454         { 0x00, nvkm_ioctl_ntfy_del },
455         { 0x00, nvkm_ioctl_ntfy_get },
456         { 0x00, nvkm_ioctl_ntfy_put },
457 };
只看函数名就能得出结论,我们最终会调用nvkm_ioctl_mthd:
// /drivers/gpu/drm/nouveau/core/core/ioctl.c
203 static int
204 nvkm_ioctl_mthd(struct nouveau_handle *handle, void *data, u32 size)
205 {
206         struct nouveau_object *object = handle->object;
207         struct nouveau_ofuncs *ofuncs = object->oclass->ofuncs;
208         union {
209                 struct nvif_ioctl_mthd_v0 v0;
210         } *args = data;
211         int ret;
212 
213         nv_ioctl(object, "mthd size %d\n", size);
214         if (nvif_unpack(args->v0, 0, 0, true)) {
215                 nv_ioctl(object, "mthd vers %d mthd %02x\n",
216                          args->v0.version, args->v0.method);
217                 if (ret = -ENODEV, ofuncs->mthd)
218                         ret = ofuncs->mthd(object, args->v0.method, data, size);
219         }
220 
221         return ret;
222 }
第213行是打印调试信息的,无视之.
第214行,检查参数的正确性.
第218行,调用nvif_object对应的nouveau_object的ofuncs里的mthd.
这里毫无疑问,nvif_device对应的就是刚才我们看的devobj,直接去看它的mthd函数:
// /drivers/gpu/drm/nouveau/core/engine/device/base.c
148 static int
149 nouveau_devobj_mthd(struct nouveau_object *object, u32 mthd,
150                     void *data, u32 size)
151 {
152         switch (mthd) {
153         case NV_DEVICE_V0_INFO:
154                 return nouveau_devobj_info(object, data, size);
155         default:
156                 break;
157         }
158         return -EINVAL;
159 }
一个switch语句判断类型,任务交给nouveau_devobj_info来完成.
// /drivers/gpu/drm/nouveau/core/engine/device/base.c
 79 static int
 80 nouveau_devobj_info(struct nouveau_object *object, void *data, u32 size)
 81 {
 82         struct nouveau_device *device = nv_device(object);
 83         struct nouveau_fb *pfb = nouveau_fb(device);
 84         struct nouveau_instmem *imem = nouveau_instmem(device);
 85         union {
 86                 struct nv_device_info_v0 v0;
 87         } *args = data;
 88         int ret;
 89 
 90         nv_ioctl(object, "device info size %d\n", size);
 91         if (nvif_unpack(args->v0, 0, 0, false)) {
 92                 nv_ioctl(object, "device info vers %d\n", args->v0.version);
 93         } else
 94                 return ret;
 95 
 96         switch (device->chipset) {
 97         case 0x01a:
 98         case 0x01f:
 99         case 0x04c:
100         case 0x04e:
101         case 0x063:
102         case 0x067:
103         case 0x068:
104         case 0x0aa:
105         case 0x0ac:
106         case 0x0af:
107                 args->v0.platform = NV_DEVICE_INFO_V0_IGP;
108                 break;
109         default:
110                 if (device->pdev) {
111                         if (pci_find_capability(device->pdev, PCI_CAP_ID_AGP))
112                                 args->v0.platform = NV_DEVICE_INFO_V0_AGP;
113                         else
114                         if (pci_is_pcie(device->pdev))
115                                 args->v0.platform = NV_DEVICE_INFO_V0_PCIE;
116                         else
117                                 args->v0.platform = NV_DEVICE_INFO_V0_PCI;
118                 } else {
119                         args->v0.platform = NV_DEVICE_INFO_V0_SOC;
120                 }
121                 break;
122         }
123 
124         switch (device->card_type) {
125         case NV_04: args->v0.family = NV_DEVICE_INFO_V0_TNT; break;
126         case NV_10:
127         case NV_11: args->v0.family = NV_DEVICE_INFO_V0_CELSIUS; break;
128         case NV_20: args->v0.family = NV_DEVICE_INFO_V0_KELVIN; break;
129         case NV_30: args->v0.family = NV_DEVICE_INFO_V0_RANKINE; break;
130         case NV_40: args->v0.family = NV_DEVICE_INFO_V0_CURIE; break;
131         case NV_50: args->v0.family = NV_DEVICE_INFO_V0_TESLA; break;
132         case NV_C0: args->v0.family = NV_DEVICE_INFO_V0_FERMI; break;
133         case NV_E0: args->v0.family = NV_DEVICE_INFO_V0_KEPLER; break;
134         case GM100: args->v0.family = NV_DEVICE_INFO_V0_MAXWELL; break;
135         default:
136                 args->v0.family = 0;
137                 break;
138         }
139 
140         args->v0.chipset  = device->chipset;
141         args->v0.revision = device->chipset >= 0x10 ? nv_rd32(device, 0) : 0x00;
142         if (pfb)  args->v0.ram_size = args->v0.ram_user = pfb->ram->size;
143         else      args->v0.ram_size = args->v0.ram_user = 0;
144         if (imem) args->v0.ram_user = args->v0.ram_user - imem->reserved;
145         return 0;
146 }
第91行,照例校验参数,打印调试信息.
第96行的一个大switch语句,其实就是获得设备的platform.
第124行,把设备的family转化为更加文字化的构架名.
第140行,貌似是顺便把设备的chipset和boot0寄存器的值放到info里?
之后的那三行是获取显卡内存大小的,因为那些subdev/engine的初始化还没展开,所以可能不理解. 以后会说到的.

下面先来简单介绍一下各个subdev/engine的作用功能把[按初始化的顺序来]:
NV_ENGINE_DEVICE: 这个早就创建和初始化了....

NV_SUBDEV_VBIOS: 识别并分析NVIDIA的BIOS,这里面储存这很多东西,比如NVIDA设备初始化表格,显示器的链接状态,HDMI信息等.
NV_SUBDEV_DEVINIT: 执行BIOS中的NVIDIA设备初始化表格,当然有时候BIOS已经执行好了,那么啥事没干.
NV_SUBDEV_GPIO: 一种总线,比较底层的一个SUBDEV,其他SUBDEV/ENGINE依赖.
NV_SUBDEV_I2C: 另一种总线,作用同上.
NV_SUBDEV_MXM: 根据MXMS信息来修正VBIOS中的数据,MXMS信息是从I2C中得到的.
NV_SUBDEV_MC: 管理NVIDIA设备中断分发给各个SUBDEV.
NV_SUBDEV_BUS: 接受处理BUS的中断,还包括hwsq接口,其他SUBDEV/ENGINE会用到.
NV_SUBDEV_TIMER: 定时器,到时间会发出中断.
NV_SUBDEV_FB: 这可不是FrameBuffer的缩写,只是一个得到显卡内存信息、管理显卡内存的东西.
NV_SUBDEV_LTC: 有一个zbc color的功能,还没仔细看,意义不明;另一个是压缩显卡内存的功能. [不是增大容量,是节省带宽.]
NV_SUBDEV_IBUS: 只有一个中断处理函数.
NV_SUBDEV_INSTMEN: 也是有关显卡物理内存管理的东西. 比NV_SUBDEV_PFB高一层,有了访问的接口.
NV_SUBDEV_VM: 显卡虚拟内存管理. 虚拟内存有三块,两块是PCI里的两个BAR,还有一块是nouveau_channel,但最终都是在这里管理的.
NV_SUBDEV_BAR: 如上所述,PCI里的两个BAR的虚拟内存映射.
NV_SUBDEV_PWR: 应该是一个处理器.
NV_SUBDEV_VOLT: 电压读取和设置.
NV_SUBDEV_THERM: 读取显卡温度,读取和设置显卡风扇转速.
NV_SUBDEV_CLOCK: 显卡时钟频率的读取、设置.

NV_ENGINE_DMAOBJ:显然是和DMA有关的,比如系统内存中的数据交给显卡处理.
NV_ENGINE_IFB: 没有具体的oclass,只是在中断中充当了一个case语句.
NV_ENGINE_FIFO: 这个是nouveau_channl用的.
NV_ENGINE_SW: 其中一个功能是当更换framebuffer完成时,硬件通知软件.
NV_ENGINE_GR: 图形处理相关.
NV_ENGINE_MPEG: NV50之前有效,不分析.
NV_ENGINE_ME: 意义不明,貌似和NV_ENGINE_IFB差不多.
NV_ENGINE_VP: 应该也是一个处理器.
NV_ENGINE_CRYPT: 只在NV50有效.
NV_ENGINE_BSP: 貌似还是一个处理器.
NV_ENGINE_PPP: video post-processing engine,意义不明.
NV_ENGINE_COPY0/COPY1/COPY2: 大概还是处理器把.
NV_ENGINE_VIC: 应该和NV_ENGINE_IFB差不多,意义不明.
NV_ENGINE_VENC: 同上.
NV_ENGINE_DISP: 有关显示模式设定,以及切换framebuffer,vblank之类的东西.
NV_ENGINE_PERFMON: 对于NVC0,是一个目前还没有做好的东西. 里面几个空数组.

等具体说的时候争取尽量附上envytools的链接,里面有一些对ENGINE/SUBDEV简介很不错.
这么多东西又不知道得写到猴年马月了......

Nouveau源码分析(六):NVIDIA设备初始化之nouveau_drm_load (3)

原文:http://blog.csdn.net/goodqt/article/details/41207163

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!