题目大意:给出一排东西,现在要建造防御塔,在i处建造防御塔的花费是cost[i],所有东西的花费是他它距离右侧最近的防御塔的距离。求最小花费。
思路:很简单的斜率优化。DP方程:f[i] = f[j] + (i - j - 1) * (i - j) / 2 + cost[i]
然后简单整理一下会发现f[j] + (j + 1) * j / 2 = f[i] - i ^ 2 + i * j + i / 2 + cost[i]
之后移项,得到y = f[j] + j * (j + 1) / 2;
k = i,x = j;
然后斜率优化一下。。。
CODE:
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define MAX 1000010
using namespace std;
struct Point{
long long x,y;
Point(long long _ = 0,long long __ = 0):x(_),y(__) {}
}q[MAX];
int cnt,cost[MAX];
long long f[MAX];
int front,tail;
inline double GetSlope(const Point &a,const Point &b)
{
if(a.x == b.x) return 1e15;
return (double)(a.y - b.y) / (a.x - b.x);
}
inline void Insert(long long x,long long y)
{
Point now(x,y);
while(tail - front > 1)
if(GetSlope(q[tail],now) < GetSlope(q[tail - 1],q[tail]))
--tail;
else break;
q[++tail] = now;
}
inline Point GetAns(double slope)
{
while(tail - front > 1)
if(GetSlope(q[front + 1],q[front + 2]) < slope)
++front;
else break;
return q[front + 1];
}
int main()
{
cin >> cnt;
for(int i = 1; i <= cnt; ++i)
scanf("%d",&cost[i]);
for(int i = 1; i <= cnt; ++i) {
Insert(i - 1,f[i - 1] + (long long)i * (i - 1) / 2);
Point ans = GetAns(i);
f[i] = ans.y + (long long)i * (i - 1) / 2 - (long long)i * ans.x + cost[i];
}
cout << f[cnt] << endl;
return 0;
}原文:http://blog.csdn.net/jiangyuze831/article/details/41679615