首页 > 其他 > 详细

机器学习基石第一讲笔记

时间:2014-12-09 21:07:20      阅读:304      评论:0      收藏:0      [点我收藏+]

近来觉得机器学习愈发重要。有人推荐了台大林轩田老师讲授的“机器学习基石”,感觉林老师讲得生动清楚,是很好的课程,值得一学。

第一讲介绍了机器学习是什么,使用机器学习的条件,机器学习的模型是怎样的。

1. 机器学习是一种处理复杂系统的方法,这里老师举了4个例子:

(1) when human cannot program the system manually --navigating on Mars
(2) when human cannot ‘define the solution‘ easily --speech/visual recognition
(3) when needing rapid decisions that humans cannot do --high-frequency trading
(4) when needing to be user-oriented in a massive scale --consumer-targeted marketing
 
2. 机器学习的实质:improving some performance measure with experience computed from data
可以使用的条件:
(1) exists some ‘underlying pattern‘ to be learned --so ‘performance measure‘ can be improved
(2) but no programmable (easy) definition --so ‘ML‘ is needed
(3) somehow there is data about the pattern --so ML has some ‘inputs‘ to learn from
 
3. 机器学习的模型:从训练数据D出发,用某种算法A从假设集合H中找出最接近目标f的假设g。
bubuko.com,布布扣

 

机器学习基石第一讲笔记

原文:http://www.cnblogs.com/hellohellohello/p/4154000.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!