入门视频教程
R语言初级课程(1)- R语言快速入门http://cos.name/videos/intro-2-r/
代码
#对象 1+1*3 c(1,2,3,4,5) c('helloworld','i am a R user') c("hehe","haha") 1:6 6:1 exp(1:4) log(1:3) a<-c(1,2,3,4,5) a[1] a[1:3] a[-4] a>3 a[a>3] #数组,类型需要一致 x<-1:12 a<-array(x,c(3,4)) a[2,2] a[2,] a[,2] #数据框(类似数据库表) city<-c('aa','bb','cc','dd','ee') age<-c(12,34,45,67,78) sex<-c('F','M','F','M','F') people<-data.frame(city,age,sex) people people[2,3] people[,2] people$age people$age>30 people[people$age>30,] #列表,长度可以不一致 mylist<-list(age,city,sex) mylist # class(a) class(people) class(mylist) attributes(people) str(people)#了解对象详细情况
运行结果
> #对象 > 1+1*3 [1] 4 > c(1,2,3,4,5) [1] 1 2 3 4 5 > c('helloworld','i am a R user') [1] "helloworld" "i am a R user" > c("hehe","haha") [1] "hehe" "haha" > 1:6 [1] 1 2 3 4 5 6 > 6:1 [1] 6 5 4 3 2 1 > exp(1:4) [1] 2.718282 7.389056 20.085537 54.598150 > log(1:3) [1] 0.0000000 0.6931472 1.0986123 > a<-c(1,2,3,4,5) > a[1] [1] 1 > a[1:3] [1] 1 2 3 > a[-4] [1] 1 2 3 5 > a>3 [1] FALSE FALSE FALSE TRUE TRUE > a[a>3] [1] 4 5 > > > #数组,类型需要一致 > x<-1:12 > a<-array(x,c(3,4)) > a[2,2] [1] 5 > a[2,] [1] 2 5 8 11 > a[,2] [1] 4 5 6 > > > #数据框(类似数据库表) > city<-c('aa','bb','cc','dd','ee') > age<-c(12,34,45,67,78) > sex<-c('F','M','F','M','F') > people<-data.frame(city,age,sex) > people city age sex 1 aa 12 F 2 bb 34 M 3 cc 45 F 4 dd 67 M 5 ee 78 F > people[2,3] [1] M Levels: F M > people[,2] [1] 12 34 45 67 78 > people$age [1] 12 34 45 67 78 > people$age>30 [1] FALSE TRUE TRUE TRUE TRUE > people[people$age>30,] city age sex 2 bb 34 M 3 cc 45 F 4 dd 67 M 5 ee 78 F > > > #列表,长度可以不一致 > mylist<-list(age,city,sex) > mylist [[1]] [1] 12 34 45 67 78 [[2]] [1] "aa" "bb" "cc" "dd" "ee" [[3]] [1] "F" "M" "F" "M" "F" > > > # > class(a) [1] "matrix" > class(people) [1] "data.frame" > class(mylist) [1] "list" > attributes(people) $names [1] "city" "age" "sex" $row.names [1] 1 2 3 4 5 $class [1] "data.frame" > str(people)#了解对象详细情况 'data.frame': 5 obs. of 3 variables: $ city: Factor w/ 5 levels "aa","bb","cc",..: 1 2 3 4 5 $ age : num 12 34 45 67 78 $ sex : Factor w/ 2 levels "F","M": 1 2 1 2 1
R语言初级课程(2)- R语言中的可视化函数http://cos.name/videos/r101-data-visualization-with-r/
代码
#绘图包graphics(基本),lattice(高级),ggplot2(功能强) #基本绘图函数 x<-c(1,2,3,4,5) y<-c(2,4,2,4,5) #左边表示y,右边表示x plot(y~x)#默认离散点 plot(y~x,type='l')#line plot(y~x,type='h')#hist hist(y)#直方图 #使用lattice包 library(lattice) num<-sample(1:3,size=50,replace=1) barchart(table(num)) stripplot densityplot xyplot histgram #lattice 包的三维图形 library(lattice) wireframe #ggplot2包 library(ggplot2) p<-ggplot(...) print(p) p<- p+ stat_smooth()+ geom_point()+ scale_color_manual()+ facet_wrap()+ opts()+ labs()
R语言初级课程(3)- R读取数据http://cos.name/videos/r101-data-access/
代码
#控制台的输入 x<-readline()#输入一行 x<-scan()#输入多行 #本地文件输出 output<-file('E:/out.txt') cat(1:100,sep='\t',file=output) close(output) #本地文件输入 output<-file('E:/out.txt') input<-scan(file=output) close(output) #字符串的输入 output<-file('E:/out2.txt') writeLines(as.character(1:12),con=output) input<-readLines(output) #数据表的读写(read.table和write.table) write.table(iris,file='iris.csv',sep=',') data<-read.table(file='iris.csv',sep=',') data<-read.table(file=file.choose(),sep=',') data<-read.table('clipboard') #连接数据库 library(RODBC) channel<-odbcConnect('mysql',uid=user,pwd=password) sqlTables(channel) data<-sqlFetch(channel,"customers") sqlQuery(channel,'select * from orders') #读excel文档 excelcha<-odbcConnectExcel('c:/iris.xls',readonly=false) sqlTables(excelcha) data<-sqlFetch(excelcha,'sheet1') data$new<-with(data.sqpal_length/sepal_width) sqlsave(excel,data,tablename='sheet3') #web数据抓取 library(xml) url<-'www.google.com/adplanner/static/top1000' tables<-readHTMLTable(url,stringAsFactors=false,header=F) data<-tables[[2]]
R语言初级课程(4)- 数据汇总plyr包http://cos.name/videos/r101-plyr/
data(tips,package='reshape2') library(plyr) head(tips) aggregate(x=tips$tip, by=list(tip$sex), fun=mean) ddply(data=tips, variables='sex', fun=function(x){mean(x$tip)}) ratio_fun <-function(x){ sum(x$tip/sum(x$total_bill)) } ddply(tips,.(sex),ratio_fun) x<-1:10 each(min,max)(x) colwise(mean,is.numeric)(iris)
R语言初级课程(5)- 回归分析http://cos.name/videos/r101-regression/
原文:http://blog.csdn.net/zhyoulun/article/details/41044851