首页 > 其他 > 详细

POJ 2127 Greatest Common Increasing Subsequence -- 动态规划

时间:2014-03-01 06:14:53      阅读:506      评论:0      收藏:0      [点我收藏+]

题目地址:http://poj.org/problem?id=2127

Description

You are given two sequences of integer numbers. Write a program to determine their common increasing subsequence of maximal possible length.
Sequence S1 , S2 , . . . , SN of length N is called an increasing subsequence of a sequence A1 , A2 , . . . , AM of length M if there exist 1 <= i1 < i2 < . . . < iN <= M such that Sj = Aij for all 1 <= j <= N , and Sj < Sj+1 for all 1 <= j < N .

Input

Each sequence is described with M --- its length (1 <= M <= 500) and M integer numbers Ai (-231 <= Ai < 231 ) --- the sequence itself.

Output

On the first line of the output file print L --- the length of the greatest common increasing subsequence of both sequences. On the second line print the subsequence itself. If there are several possible answers, output any of them.

Sample Input

5
1 4 2 5 -12
4
-12 1 2 4

Sample Output

2
1 4


状态dp[i][j]表示seq1[i]从1到i与seq2[j]从1到j并以j为结尾的LCIS的长度

状态转移方程:

dp[i][j] = max(dp[i][k]) + 1, if seq1[i] ==seq2[j], 1 <= k  < j

dp[i][j] = dp[i-1][j], if seq1[i] != seq2[j]


#include <stdio.h>
#include <string.h>

#define MAX 501

typedef struct path{
	int x, y;
}Pre;

int seq1[MAX], seq2[MAX];
int len1, len2;
int dp[MAX][MAX]; //状态dp[i][j]记录seq1前i个与seq2前j个并以seq2[j]为结尾的LCIS的长度
Pre pre[MAX][MAX];//pre[i][j]记录前驱
int path[MAX];//根据pre[i][j]回溯可得到LCIS
int index;

int LCIS(){
	int i, j;
	int max, tx, ty;
	int id_x, id_y;
	int tmpx, tmpy;
	//给dp[i][j]、pre[i][j]置初值
	memset(dp, 0, sizeof(dp));
	memset(pre, 0, sizeof(pre));
	for (i = 1; i <= len1; ++i){
		max = 0;
		tx = ty = 0;
		for (j = 1; j <= len2; ++j){
			//状态转移方程
			dp[i][j] = dp[i-1][j];
			pre[i][j].x = i - 1;
			pre[i][j].y = j;
			if (seq1[i] > seq2[j] && max < dp[i-1][j]){
				max = dp[i-1][j];
				tx = i - 1;
				ty = j;
			}
			if (seq1[i] == seq2[j]){
				dp[i][j] = max + 1;
				pre[i][j].x = tx;
				pre[i][j].y = ty;
			}
		}
	}
	//找到LCIS最后的数字的位置
	max = -1;
	for (i = 1; i <= len2; ++i){
		if (dp[len1][i] > max){
			max = dp[len1][i];
			id_y = i;
		}
	}
	id_x = len1;
	index = 0;
	while (dp[id_x][id_y] != 0){
		tmpx = pre[id_x][id_y].x;
		tmpy = pre[id_x][id_y].y;
		//若找到前一对公共点,则添加进路径
		if (dp[tmpx][tmpy] != dp[id_x][id_y]){
			path[index] = seq2[id_y];
			++index;
		}
		id_x = tmpx;
		id_y = tmpy;
	}
	return max;
}

int main(void){
	int i;
	while (scanf("%d", &len1) != EOF){
		for (i = 1; i <= len1; ++i)
			scanf("%d", &seq1[i]);
		scanf("%d", &len2);
		for (i = 1; i <= len2; ++i)
			scanf("%d", &seq2[i]);

		printf("%d\n", LCIS());
		--index;
		if (index >= 0)
			printf("%d", path[index]);
		for (i = index - 1; i >= 0; --i){
			printf(" %d", path[i]);
		}
		printf("\n");
	}

	return 0;
}


POJ 2127 Greatest Common Increasing Subsequence -- 动态规划,布布扣,bubuko.com

POJ 2127 Greatest Common Increasing Subsequence -- 动态规划

原文:http://blog.csdn.net/jdplus/article/details/20136257

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!