题目:http://codeforces.com/contest/397/problem/D
关键是要用数学归纳法证明:当n + 1 = p, p 为质数时,
= 1 / 2 - 1 / p。
证明过程:当p = 3时,显然成立,假设q为下一个质数,则 原式 = 1 / 2 - 1 / p + (q - p) / (p*q) = 1/2 - 1/q。得证。
代码:
#include <algorithm>
#include <functional>
#include <numeric>
#include <utility>
#include <iostream>
#include <sstream>
#include <iomanip>
#include <bitset>
#include <string>
#include <vector>
#include <stack>
#include <deque>
#include <queue>
#include <set>
#include <map>
#include <cstdio>
#include <cstdlib>
#include <cctype>
#include <cmath>
#include <cstring>
#include <ctime>
#include <climits>
using namespace std;
typedef pair<int, int> pii;
typedef long long llong;
typedef pair<llong, llong> pll;
#define mkp make_pair
#define CHECKTIME() printf("%.2lf\n", (double)clock() / CLOCKS_PER_SEC)
const int MOD = 1e9 + 7;
bool isPrime(long long n)
{
int lim = floor( sqrt(n * 1.0 + 0.5) );
for (int i = 2; i <= lim; i++) {
if (n % i == 0) {
return false;
}
}
return true;
}
long long gcd(long long a, long long b)
{
if (a < b) {
swap(a, b);
}
while (b != 0) {
long long t = a % b;
a = b;
b = t;
}
return a;
}
int main()
{
#ifdef LOCAL_DEBUG
freopen("in.txt", "r", stdin);
#endif
int t, n;
cin >> t;
for (int i = 0; i < t; i++) {
cin >> n;
long long p, q;
p = n + 1;
while (!isPrime(p)) {
--p;
}
q = n + 1;
while (!isPrime(q)) {
++q;
}
// 1/2 - 1/p + (n - p + 1) * 1/(p * q)
long long t1 = p * q - 2 * q + 2 * (n - p + 1);
long long t2 = 2 * p * q;
long long g = gcd(t1, t2);
cout << t1 / g << "/" << t2 / g << endl;
}
return 0;
}CF232 D2D:On Sum of Fractions,math,布布扣,bubuko.com
CF232 D2D:On Sum of Fractions,math
原文:http://blog.csdn.net/xzz_hust/article/details/20222049