@author:wepon
@blog:http://blog.csdn.net/u012162613/article/details/42214205
实际应用中,我们仅需保留着三个比较小的矩阵,就能表示A,不仅节省存储量,在计算的时候更是减少了计算量。SVD在信息检索(隐性语义索引)、图像压缩、推荐系统、金融等领域都有应用。
在上一篇文章主成分分析中,我是通过特征值分解的方法来实现PCA的,除了特征值分解,还可以用奇异值分解来实现PCA。特征值和奇异值二者之间是有关系的:上面我们由矩阵A获得了奇异值sigma(i),假如方阵A*A‘的特征值为lamda(i),则:sigma(i)^2=lamda(i)。可以发现,求特征值必须要求矩阵是方阵,而求奇异值对任意矩阵都可以,因此PCA的实现其实用SVD的更多,在scikit-learn中,PCA算法其实也是通过SVD来实现的。
>>> A=mat([[1,2,3],[4,5,6]]) >>> from numpy import linalg as la >>> U,sigma,VT=la.svd(A) >>> U matrix([[-0.3863177 , -0.92236578], [-0.92236578, 0.3863177 ]]) >>> sigma array([ 9.508032 , 0.77286964]) >>> VT matrix([[-0.42866713, -0.56630692, -0.7039467 ], [ 0.80596391, 0.11238241, -0.58119908], [ 0.40824829, -0.81649658, 0.40824829]])
有一点需要注意,sigma本来应该跟A矩阵的大小2*3一样,但linalg.svd()只返回了一个行向量的sigma,并且只有2个奇异值(本来应该有3个),这是因为第三个奇异值为0,舍弃掉了。之所以这样做,是因为当A是非常大的矩阵时,只返回奇异值可以节省很大的存储空间。当然,如果我们要重构A,就必须先将sigma转化为矩阵。
推荐文章,也是本文参考的一篇文章:机器学习中的数学(5)-强大的矩阵奇异值分解(SVD)及其应用
原文:http://blog.csdn.net/u012162613/article/details/42214205