首页 > 其他 > 详细

[LeetCode] Combination Sum II

时间:2014-12-28 20:41:59      阅读:214      评论:0      收藏:0      [点我收藏+]

Given a collection of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.

Each number in C may only be used once in the combination.

Note:

  • All numbers (including target) will be positive integers.
  • Elements in a combination (a1, a2, … , ak) must be in non-descending order. (ie, a1a2 ≤ … ≤ ak).
  • The solution set must not contain duplicate combinations.

For example, given candidate set 10,1,2,7,6,1,5 and target 8,
A solution set is:
[1, 7]
[1, 2, 5]
[2, 6]
[1, 1, 6]

以下是我 AC 的代码:

/**
 * author: Zhou J
 */
class Solution 
{
public:
    vector<vector<int> > combinationSum2(vector<int> &num, int target) 
    {
        sort(num.begin(), num.end());
        vector<vector<int>> ret;
        vector<int> path;
        combinationSum2Rec(num, target, ret, path, 0);
        return ret;
    }
    
private:
    void combinationSum2Rec(const vector<int> &num,
                            const int target,
                            vector<vector<int>> &ret,
                            vector<int> &path,
                            size_t pos)
    {
        if (target == 0)
        {
            ret.push_back(path);
            return;
        }
        
        // Mark the previous one
        int prev = -1;
        
        for (size_t ix = pos; ix != num.size(); ++ix)
        {
            if (num[ix] > target)
            {
                break;
            }
            
            if (prev == num[ix])
            {
                continue;
            }
            
            path.push_back(num[ix]);
            combinationSum2Rec(num, target - num[ix], ret, path, ix + 1);
            // Backtracing. Note that we should sort the vector before we use the skill of backtracing.
            path.erase(path.end() - 1);
            // The one which we have pushed just now. 
            prev = num[ix];
        }
    }
};

[LeetCode] Combination Sum II

原文:http://www.cnblogs.com/jianxinzhou/p/4190376.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!