题目描述:
Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1 and 0 respectively
in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[ [0,0,0], [0,1,0], [0,0,0] ]
The total number of unique paths is 2.
代码:
int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid)
{
int i,j;
int m = obstacleGrid.size();
int n = obstacleGrid[0].size();
int ** pathCount = (int**)(malloc(sizeof(int*)*m));
for(i = 0;i < m;i++)
pathCount[i] = (int*)malloc(sizeof(int)*n);
for(i = 0;i < n;i++)
if(obstacleGrid[0][i] == 0)
pathCount[0][i] = 1;
else
break;
for(;i < n;i++)
pathCount[0][i] = 0;
for(i = 0;i < m;i++)
if(obstacleGrid[i][0] == 0)
pathCount[i][0] = 1;
else
break;
for(;i < m;i++)
pathCount[i][0] = 0;
for(i = 1;i < m;i++)
for(j = 1;j < n;j++)
{
if(obstacleGrid[i][j] == 1)
pathCount[i][j] = 0;
else
pathCount[i][j] = pathCount[i-1][j] + pathCount[i][j-1];
}
return pathCount[m-1][n-1];
}
原文:http://blog.csdn.net/yao_wust/article/details/42234591