1 10 1 2 3 4 5 6 7 8 9 10 Query 1 3 Add 3 6 Query 2 7 Sub 10 2 Add 6 3 Query 3 10 End
Case 1: 6 33 59
<span style="font-size:14px;">#include<cstdio>
#define maxn 55000
using namespace std;
int a[maxn];
struct seg_tree
{
    int a,b;     //a为左端点 b为右端点 
    int total;   //[a,b]区间内的人数
}s_tree[maxn*4]; //开一个 maxn*4的结构数组 
void build(int x,int y,int k)  //在tree[k]位置建立线段[x,y]
{
    int mid=(x+y)/2,i;
    s_tree[k].a=x;  s_tree[k].b=y;  //左右端点
    s_tree[k].total=0;              //初始化区间人数为0
    for(i=x;i<=y;i++) s_tree[k].total+=a[i];
    if(y-x>=1) 
    {
        build(x,mid,k*2+1);     //在左子树tree[2*k+1]上建立线段[x,mid]
        build(mid+1,y,k*2+2);   //在右子树tree[2*k+2]上建立线段[mid+1,y] 
    }
}
int Query(int x,int y,int k)
{
	//[x,y]完全覆盖结点k
	if(x<=s_tree[k].a&&y>=s_tree[k].b) return s_tree[k].total;
	int mid=(s_tree[k].a+s_tree[k].b)/2,ret;
	if(x<=mid)   //[x,y]与左子树有交点 
	{
        if(y>=mid+1) ret=Query(x,mid,k*2+1)+Query(mid+1,y,k*2+2); //[x,y]右左子树有交点
        else ret=Query(x,y,k*2+1);  //[x,y]只与左子树有交点
    }
    else ret=Query(x,y,k*2+2); //[x,y]只与右子树有交点
    return ret;
}
void Add(int x,int k,int p)
{
    if(x>=s_tree[k].a&&x<=s_tree[k].b) s_tree[k].total+=p;
    else return;
	Add(x,k*2+1,p);
	Add(x,k*2+2,p);
}
int main()
{
	//freopen("a.in","r",stdin);
	int T,i;
    scanf("%d",&T);
    for(i=1;i<=T;i++)
    {
        printf("Case %d:\n",i);
        int N,i,j;
        char cmd[10];
        scanf("%d",&N);
        for(i=1;i<=N;i++) scanf("%d",&a[i]);
        build(1,N,0);
        while(scanf("%s",&cmd))
        {
            if(cmd[0]=='E') break;
            scanf("%d %d",&i,&j);
            if(cmd[0]=='A') Add(i,0,j);
            else if(cmd[0]=='S') Add(i,0,-1*j);
            //else printf("区间[%d %d]的人数为:%d\n",i,j,Query(i,j,0));
            else printf("%d\n",Query(i,j,0));
        }
    }
	return 0;
}</span>
原文:http://blog.csdn.net/rechard_chen/article/details/42271277