首页 > 其他 > 详细

Edit Distance(动态规划,难)

时间:2015-01-03 22:23:41      阅读:306      评论:0      收藏:0      [点我收藏+]

Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)

You have the following 3 operations permitted on a word:

a) Insert a character
b) Delete a character
c) Replace a character

典型的dp题

class Solution {
public:
    int minDistance(string word1, string word2) {
        int row=word1.size()+1;
        int col=word2.size()+1;
        int isEqual=0;
        
        int dp[row][col];
        for(int i=0;i<col;++i){
            dp[0][i]=i;
        }
        for(int i=0;i<row;++i){
            dp[i][0]=i;
        }
        for(int i=1;i<row;++i)
            for(int j=1;j<col;++j){
                isEqual=(word1[i-1]==word2[j-1])?0:1;
                dp[i][j]=min(dp[i-1][j]+1,min(dp[i][j-1]+1,dp[i-1][j-1]+isEqual));
            }
        return dp[row-1][col-1];
    }
};

 

Edit Distance(动态规划,难)

原文:http://www.cnblogs.com/fightformylife/p/4199948.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!