题目链接:hdu1565
对于每一个数,取或者不取,用0表示不取,1表示取,那么对于每一行的状态,就可以用一个二进制的数来表示。比如5的二进制为101,就表示取第一个数,不取第二个数,取第三个数。
将符合要求的状态保存下来,什么是符合要求的呢?即二进制数中不存在相邻的1(110,011都是不符合要求的)。可以用移位并按位与的办法来判断,举个例子:110左移一位为011 ,110&011 = 1,不符合要求;101左移一位为010,101&010=0,符合要求,这是判断同一行时的方法。
判断上下两行,只需将上下两行的状态按位与即可。(PS:在纸上写写,和容易就能看出来)
然后枚举每一行的状态和上一行的状态,找出不与上一个状态冲突的情况,然后计算,选择当前状态的最大值
#include <cstdio> #include <cstring> #include <algorithm> #include <iostream> using namespace std; int status[20000];//存状态 int map[25][25]; int d[25][20000];//d[i][j]表示第i行第j种状态时的最大和(这时的最大和是1~i行所能取得的最大和) int n; int init(int n)//将符合要求的状态保存下来,即没有两个一相邻的情况 { int M = 0; for(int i = 0; i < n; i ++) if( (i&(i>>1)) == 0 ) status[M++] = i; return M; } int cal(int x, int t)//计算该状态下的和 { int sum = 0, j = n - 1; while(t) { if(t&1) sum += map[x][j]; j--; t >>= 1; } return sum; } int main() { int i,j,k; while(~scanf("%d",&n)) { if(n == 0)//加上这句用C++提交能过,没这句C++就过不了,但G++能,不知道为啥 { printf("0\n"); continue; } int M = init(1<<n);//初始化 memset(d, 0, sizeof(d)); for(i = 0; i < n; i ++) for(j = 0; j < n; j ++) scanf("%d",&map[i][j]); for(i = 0; i < M; i ++) d[0][i] = cal(0, status[i]); for(i = 1; i < n; i ++)//第i行 { for(j = 0; j < M; j ++)//枚举第i行的状态 { int temp = cal(i,status[j]); for(k = 0; k < M; k ++)//枚举上一行的状态,即第i-1行 { if(status[j] & status[k]) continue;//上一行和这一行存在上下相邻的1 d[i][j] = max(d[i-1][k]+temp, d[i][j]); } } } int ans = 0; for(i = n - 1, j = 0; j < M ; j ++) ans = max(d[i][j], ans); printf("%d\n",ans); } return 0; }
hdu1565 方格取数(状态压缩),布布扣,bubuko.com
原文:http://blog.csdn.net/jzmzy/article/details/20367939