首页 > 其他 > 详细

[Everyday Mathematics]20150127

时间:2015-01-13 10:16:03      阅读:238      评论:0      收藏:0      [点我收藏+]

设 $f,g:[a,b]\to [0,\infty)$ 连续, 单调递增, 并且 $$\bex \int_a^x \sqrt{f(t)}\rd t\leq \int_a^x \sqrt{g(t)}\rd t,\quad \forall\ x\in [a,b];\quad\quad\int_a^b \sqrt{f(t)}\rd t= \int_a^b \sqrt{g(t)}\rd t. \eex$$ 试证: $$\bex \int_a^b \sqrt{1+f(t)}\rd t\leq \int_a^b \sqrt{1+g(t)}\rd t. \eex$$

[Everyday Mathematics]20150127

原文:http://www.cnblogs.com/zhangzujin/p/4220472.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!