Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[ [2], [3,4], [6,5,7], [4,1,8,3] ]
The minimum path sum from top to bottom is 11
(i.e., 2 + 3 + 5 + 1 =
11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
class Solution { public: int minimumTotal(vector<vector<int> > &triangle) { vector<vector<int>>& t = triangle; int n = t.size(); if(n == 0) return 0; if(n==1) return t[0][0]; for(int i=n-1; i>0; i--) { int m = t[i-1].size(); for(int j=0;j<m;j++) { t[i-1][j] = t[i-1][j] + (t[i][j]>t[i][j+1] ? t[i][j+1]:t[i][j]); } } return t[0][0]; } };
原文:http://blog.csdn.net/shaya118/article/details/42718009