关于小波变换我只是有一个很朴素了理解。不过小波变换可以和傅里叶变换结合起来理解。
傅里叶变换是用一系列不同频率的正余弦函数去分解原函数,变换后得到是原函数在正余弦不同频率下的系数。
小波变换使用一系列的不同尺度的小波去分解原函数,变换后得到的是原函数在不同尺度小波下的系数。
不同的小波通过平移与尺度变换分解,平移是为了得到原函数的时间特性,尺度变换是为了得到原函数的频率特性。
小波变换步骤:
1.把小波w(t)和原函数f(t)的开始部分进行比较,计算系数C。系数C表示该部分函数与小波的相似程度。
2.把小波向右移k单位,得到小波w(t-k),重复1。重复该部知道函数f结束.
3.扩展小波w(t),得到小波w(t/2),重复步骤1,2.
4.不断扩展小波,重复1,2,3.
我这里使用的haar小波,缩放函数是[1 1],小波函数是[1 -1]。是最简单的小波了。
先看看分解的效果,这次我选用了大图:
尺度为2的全分解小波包:
下面是matlab代码:
main.m
clear all; close all; clc; img=double(imread(‘Lena (2).jpg‘)); [m n]=size(img); [LL LH HL HH]=haar_dwt2D(img); %当然dwt2(img,‘haar‘)是一样的,我只是想明白细节 img=[LL LH;HL HH]; %一层分解 imgn=zeros(m,n); for i=0:m/2:m/2 for j=0:n/2:n/2 [LL LH HL HH]=haar_dwt2D(img(i+1:i+m/2,j+1:j+n/2)); %对一层分解后的四个图像分别再分解 imgn(i+1:i+m/2,j+1:j+n/2)=[LL LH;HL HH]; end end imshow(imgn)
haar_dwt2D.m
function [LL LH HL HH]=haar_dwt2D(img) [m n]=size(img); for i=1:m %每一行进行分解 [L H]=haar_dwt(img(i,:)); img(i,:)=[L H]; end for j=1:n %每一列进行分解 [L H]=haar_dwt(img(:,j)); img(:,j)=[L H]; end %本来分解不应该加mat2gray的,不过为了有好的显示效果就加上了 LL=mat2gray(img(1:m/2,1:n/2)); %行列都是低频 LH=mat2gray(img(1:m/2,n/2+1:n)); %行低频列高频 HL=mat2gray(img(m/2+1:m,1:n/2)); %行高频列低频 HH=mat2gray(img(m/2+1:m,n/2+1:n)); %行列都是高频 end
haar_dwt.m
function [L H]=haar_dwt(f) %显然,我没有做边界处理,图片最好是2^n*2^n型的 n=length(f); n=n/2; L=zeros(1,n); %低频分量 H=zeros(1,n); %高频分量 for i=1:n L(i)=(f(2*i-1)+f(2*i))/sqrt(2); H(i)=(f(2*i-1)-f(2*i))/sqrt(2); end end
参考:
http://amath.colorado.edu/courses/5720/2000Spr/Labs/Haar/haar.html
http://www.cs.ucf.edu/~mali/haar/
http://wenku.baidu.com/view/7839b821aaea998fcc220eed.html
原文:http://www.cnblogs.com/daleloogn/p/4230369.html