首页 > 其他 > 详细

POJ DNA SORTING 1007 ANSWER

时间:2015-01-19 19:20:19      阅读:347      评论:0      收藏:0      [点我收藏+]

Description

One measure of ``unsortedness‘‘ in a sequence is the number of pairs of entries that are out of order with respect to each other. For instance, in the letter sequence ``DAABEC‘‘, this measure is 5, since D is greater than four letters to its right and E is greater than one letter to its right. This measure is called the number of inversions in the sequence. The sequence ``AACEDGG‘‘ has only one inversion (E and D)---it is nearly sorted---while the sequence ``ZWQM‘‘ has 6 inversions (it is as unsorted as can be---exactly the reverse of sorted).

You are responsible for cataloguing a sequence of DNA strings (sequences containing only the four letters A, C, G, and T). However, you want to catalog them, not in alphabetical order, but rather in order of ``sortedness‘‘, from ``most sorted‘‘ to ``least sorted‘‘. All the strings are of the same length.

Input

The first line contains two integers: a positive integer n (0 < n <= 50) giving the length of the strings; and a positive integer m (0 < m <= 100) giving the number of strings. These are followed by m lines, each containing a string of length n.

Output

Output the list of input strings, arranged from ``most sorted‘‘ to ``least sorted‘‘. Since two strings can be equally sorted, then output them according to the orginal order.

Sample Input

10 6
AACATGAAGG
TTTTGGCCAA
TTTGGCCAAA
GATCAGATTT
CCCGGGGGGA
ATCGATGCAT

Sample Output

CCCGGGGGGA
AACATGAAGG
GATCAGATTT
ATCGATGCAT
TTTTGGCCAA
TTTGGCCAAA

分析:

问题的关键在于如何求解一个序列的无序度,最差肯定是O(n2)的,这里我们可以从归纳的角度分析问题,如果已知前n-1个字母序列的无序度,那么对于第n个字母,我们需要和前n-1个字母比较来更新,问题似乎没变,还是一样的复杂度,但是这里我们只有ACGT四个字母,我们想如何用更强的归纳来减少问题的规模,对于第n个字母,我们不需要显式的和前面n-1个字母比较,只要知道前面有几个A,几个C,几个G,几个T,我们就可以直接更新无序度了,如果为A,则新的无序度需要加上前n-1个字母的CGT个数,使用更强的归纳解决问题!

#include <iostream>
using namespace std;
int find_sortedness(char *seq,int length)
{
 int numA=0,numC=0,numG=0,numT=0;
 int unsort=0;
 for(int i=0;i<length;i++)
 {
  if(seq[i]==‘A‘)
  {
   unsort+=(numC+numG+numT);
   numA++;
  }
  else if(seq[i]==‘C‘)
  {
   unsort+=(numG+numT);
   numC++;
  }
  else if(seq[i]==‘G‘)
  {
   unsort+=numT;
   numG++;
  }
  else 
  {
   numT++;
  }
 }
 return unsort;
}
int main()
{
 int length=0;
 int nums=0;
 cin>>length>>nums;
 char** a=new char *[nums];
 int* results=new int[nums];
 int* print=new int[nums];
 for(int i=0;i<nums;i++)
 {
  a[i]=new char[length];
  for(int j=0;j<length;j++)
  {
   cin>>a[i][j];
  }
  results[i]=find_sortedness(a[i],length);
  print[i]=i;
 }
 for(int i=0;i<nums;i++)
  for(int j=nums-1;j>i;j--)
  {
   if(results[j]<results[j-1]) 
   {
    int tmp=results[j];
    results[j]=results[j-1];
    results[j-1]=tmp;
    tmp=print[j];
    print[j]=print[j-1];
    print[j-1]=tmp;
   }
  }
 for(int i=0;i<nums;i++)
 {
  for(int j=0;j<length;j++)
  {
   cout<<a[print[i]][j];
  }
  cout<<endl;
 }
 return 0;
 
}


本文出自 “这与那” 博客,请务必保留此出处http://hereandthere.blog.51cto.com/7561107/1605819

POJ DNA SORTING 1007 ANSWER

原文:http://hereandthere.blog.51cto.com/7561107/1605819

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!