(1)基本思想:在要排序的一组数中,假设前面(n-1)[n>=2] 个数已经是排
好顺序的,现在要把第n个数插到前面的有序数中,使得这n个数
也是排好顺序的。如此反复循环,直到全部排好顺序。
(2)实例
(3)用java实现
package com.njue;?
?
public class insertSort {?
public insertSort(){?
???? inta[]={ 49 , 38 , 65 , 97 , 76 , 13 , 27 , 49 , 78 , 34 , 12 , 64 , 5 , 4 , 62 , 99 , 98 , 54 , 56 , 17 , 18 , 23 , 34 , 15 , 35 , 25 , 53 , 51 };?
???? int temp= 0 ;?
???? for ( int i= 1 ;i<a.length;i++){?
??????? int j=i- 1 ;?
??????? temp=a[i];?
??????? for (;j>= 0 &&temp<a[j];j--){?
??????? a[j+ 1 ]=a[j];?????????????????????? //将大于temp的值整体后移一个单位?
??????? }?
??????? a[j+ 1 ]=temp;?
???? }?
???? for ( int i= 0 ;i<a.length;i++)?
??????? System.out.println(a[i]);?
}? } |
(1)基本思想:算法先将要排序的一组数按某个增量d(n/2,n为要排序数的个数)分成若干组,每组中记录的下标相差d.对每组中全部元素进行直接插入排序,然后再用一个较小的增量(d/2)对它进行分组,在每组中再进行直接插入排序。当增量减到1时,进行直接插入排序后,排序完成。
(2)实例:
(3)用java实现
public class shellSort {?
public ? shellSort(){?
???? int a[]={ 1 , 54 , 6 , 3 , 78 , 34 , 12 , 45 , 56 , 100 };?
???? double d1=a.length;?
???? int temp= 0 ;?
???? while ( true ){?
???????? d1= Math.ceil(d1/ 2 );?
???????? int d=( int ) d1;?
???????? for ( int x= 0 ;x<d;x++){?
???????????? for ( int i=x+d;i<a.length;i+=d){?
???????????????? int j=i-d;?
???????????????? temp=a[i];?
???????????????? for (;j>= 0 &&temp<a[j];j-=d){?
???????????????? a[j+d]=a[j];?
???????????????? }?
???????????????? a[j+d]=temp;?
???????????? }?
???????? }?
???????? if (d== 1 )?
???????????? break ;?
???? }?
???? for ( int i= 0 ;i<a.length;i++)?
???????? System.out.println(a[i]);?
}? } |
(1)基本思想:在要排序的一组数中,选出最小的一个数与第一个位置的数交换;
然后在剩下的数当中再找最小的与第二个位置的数交换,如此循环到倒数第二个数和最后一个数比较为止。
(2)实例:
(3)用java实现
public class selectSort {?
???? public selectSort(){?
???????? int a[]={ 1 , 54 , 6 , 3 , 78 , 34 , 12 , 45 };?
???????? int position= 0 ;?
???????? for ( int i= 0 ;i<a.length;i++){?
?
???????????? int j=i+ 1 ;?
???????????? position=i;?
???????????? int temp=a[i];?
???????????? for (;j<a.length;j++){?
???????????? if (a[j]<temp){?
???????????????? temp=a[j];?
???????????????? position=j;?
???????????? }?
???????????? }?
???????????? a[position]=a[i];?
???????????? a[i]=temp;?
???????? }?
???????? for ( int i= 0 ;i<a.length;i++)?
???????????? System.out.println(a[i]);?
???? }?
} |
(1)基本思想:堆排序是一种树形选择排序,是对直接选择排序的有效改进。
堆的定义如下:具有n个元素的序列(h1,h2,…,hn),当且仅当满足(hi>=h2i,hi>=2i+1)或(hi<=h2i,hi<=2i+1) (i=1,2,…,n/2)时称之为堆。在这里只讨论满足前者条件的堆。由堆的定义可以看出,堆顶元素(即第一个元素)必为最大项(大顶堆)。完全二叉树可以很直观地表示堆的结构。堆顶为根,其它为左子树、右子树。初始时把要排序的数的序列看作是一棵顺序存储的二叉树,调整它们的存储序,使之成为一个堆,这时堆的根节点的数最大。然后将根节点与堆的最后一个节点交换。然后对前面(n-1)个数重新调整使之成为堆。依此类推,直到只有两个节点的堆,并对它们作交换,最后得到有n个节点的有序序列。从算法描述来看,堆排序需要两个过程,一是建立堆,二是堆顶与堆的最后一个元素交换位置。所以堆排序有两个函数组成。一是建堆的渗透函数,二是反复调用渗透函数实现排序的函数。
(2)实例:
初始序列:46,79,56,38,40,84
建堆:
交换,从堆中踢出最大数
依次类推:最后堆中剩余的最后两个结点交换,踢出一个,排序完成。
(3)用java实现
import java.util.Arrays;?
?
public class HeapSort {?
????? int a[]={ 49 , 38 , 65 , 97 , 76 , 13 , 27 , 49 , 78 , 34 , 12 , 64 , 5 , 4 , 62 , 99 , 98 , 54 , 56 , 17 , 18 , 23 , 34 , 15 , 35 , 25 , 53 , 51 };?
???? public ? HeapSort(){?
???????? heapSort(a);?
???? }?
???? public ? void heapSort( int [] a){?
???????? System.out.println( "开始排序" );?
???????? int arrayLength=a.length;?
???????? //循环建堆?
???????? for ( int i= 0 ;i<arrayLength- 1 ;i++){?
???????????? //建堆?
?
?????? buildMaxHeap(a,arrayLength- 1 -i);?
???????????? //交换堆顶和最后一个元素?
???????????? swap(a, 0 ,arrayLength- 1 -i);?
???????????? System.out.println(Arrays.toString(a));?
???????? }?
???? }?
?
???? private ? void swap( int [] data, int i, int j) {?
???????? // TODO Auto-generated method stub?
???????? int tmp=data[i];?
???????? data[i]=data[j];?
???????? data[j]=tmp;?
???? }?
???? //对data数组从0到lastIndex建大顶堆?
???? private void buildMaxHeap( int [] data, int lastIndex) {?
???????? // TODO Auto-generated method stub?
???????? //从lastIndex处节点(最后一个节点)的父节点开始?
???????? for ( int i=(lastIndex- 1 )/ 2 ;i>= 0 ;i--){?
???????????? //k保存正在判断的节点?
???????????? int k=i;?
???????????? //如果当前k节点的子节点存在?
???????????? while (k* 2 + 1 <=lastIndex){?
???????????????? //k节点的左子节点的索引?
???????????????? int biggerIndex= 2 *k+ 1 ;?
???????????????? //如果biggerIndex小于lastIndex,即biggerIndex+1代表的k节点的右子节点存在?
???????????????? if (biggerIndex<lastIndex){?
???????????????????? //若果右子节点的值较大?
???????????????????? if (data[biggerIndex]<data[biggerIndex+ 1 ]){?
???????????????????????? //biggerIndex总是记录较大子节点的索引?
???????????????????????? biggerIndex++;?
???????????????????? }?
???????????????? }?
???????????????? //如果k节点的值小于其较大的子节点的值?
???????????????? if (data[k]<data[biggerIndex]){?
???????????????????? //交换他们?
???????????????????? swap(data,k,biggerIndex);?
???????????????????? //将biggerIndex赋予k,开始while循环的下一次循环,重新保证k节点的值大于其左右子节点的值?
???????????????????? k=biggerIndex;?
???????????????? } else {?
???????????????????? break ;?
???????????????? }?
???????????? }
???????? }
???? }
} |
(1)基本思想:在要排序的一组数中,对当前还未排好序的范围内的全部数,自上而下对相邻的两个数依次进行比较和调整,让较大的数往下沉,较小的往上冒。即:每当两相邻的数比较后发现它们的排序与排序要求相反时,就将它们互换。
(2)实例:
(3)用java实现
public class bubbleSort {?
public ? bubbleSort(){?
????? int a[]={ 49 , 38 , 65 , 97 , 76 , 13 , 27 , 49 , 78 , 34 , 12 , 64 , 5 , 4 , 62 , 99 , 98 , 54 , 56 , 17 , 18 , 23 , 34 , 15 , 35 , 25 , 53 , 51 };?
???? int temp= 0 ;?
???? for ( int i= 0 ;i<a.length- 1 ;i++){?
???????? for ( int j= 0 ;j<a.length- 1 -i;j++){?
???????? if (a[j]>a[j+ 1 ]){?
???????????? temp=a[j];?
???????????? a[j]=a[j+ 1 ];?
???????????? a[j+ 1 ]=temp;?
???????? }?
???????? }?
???? }?
???? for ( int i= 0 ;i<a.length;i++)?
???? System.out.println(a[i]);????
}? } |
(1)基本思想:选择一个基准元素,通常选择第一个元素或者最后一个元素,通过一趟扫描,将待排序列分成两部分,一部分比基准元素小,一部分大于等于基准元素,此时基准元素在其排好序后的正确位置,然后再用同样的方法递归地排序划分的两部分。
(2)实例:
(3)用java实现
public class quickSort {?
?? int a[]={ 49 , 38 , 65 , 97 , 76 , 13 , 27 , 49 , 78 , 34 , 12 , 64 , 5 , 4 , 62 , 99 , 98 , 54 , 56 , 17 , 18 , 23 , 34 , 15 , 35 , 25 , 53 , 51 };?
public ? quickSort(){?
???? quick(a);?
???? for ( int i= 0 ;i<a.length;i++)?
???????? System.out.println(a[i]);?
}? public int getMiddle( int [] list, int low, int high) {????
???????????? int tmp = list[low];??? //数组的第一个作为中轴????
???????????? while (low < high) {????
???????????????? while (low < high && list[high] >= tmp) {????
?
?????? high--;????
???????????????? }????
???????????????? list[low] = list[high];?? //比中轴小的记录移到低端????
???????????????? while (low < high && list[low] <= tmp) {????
???????????????????? low++;????
???????????????? }????
???????????????? list[high] = list[low];?? //比中轴大的记录移到高端????
???????????? }????
??????????? list[low] = tmp;????????????? //中轴记录到尾????
???????????? return low;?????????????????? //返回中轴的位置????
???????? }???
public void _quickSort( int [] list, int low, int high) {????
???????????? if (low < high) {????
??????????????? int middle = getMiddle(list, low, high);? //将list数组进行一分为二????
???????????????? _quickSort(list, low, middle - 1 );??????? //对低字表进行递归排序????
??????????????? _quickSort(list, middle + 1 , high);?????? //对高字表进行递归排序????
???????????? }????
???????? }??
public void quick( int [] a2) {????
???????????? if (a2.length > 0 ) {??? //查看数组是否为空????
???????????????? _quickSort(a2, 0 , a2.length - 1 );????
???????? }????
??????? }??
} |
(1)基本排序:归并(Merge)排序法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的。然后再把有序子序列合并为整体有序序列。
(2)实例:
(3)用java实现
import java.util.Arrays;?
?
public class mergingSort {?
int a[]={ 49 , 38 , 65 , 97 , 76 , 13 , 27 , 49 , 78 , 34 , 12 , 64 , 5 , 4 , 62 , 99 , 98 , 54 , 56 , 17 , 18 , 23 , 34 , 15 , 35 , 25 , 53 , 51 };?
public ? mergingSort(){?
???? sort(a, 0 ,a.length- 1 );?
???? for ( int i= 0 ;i<a.length;i++)?
???????? System.out.println(a[i]);?
}? public void sort( int [] data, int left, int right) {?
???? // TODO Auto-generated method stub?
???? if (left<right){?
???????? //找出中间索引?
???????? int center=(left+right)/ 2 ;?
???????? //对左边数组进行递归?
???????? sort(data,left,center);?
???????? //对右边数组进行递归?
???????? sort(data,center+ 1 ,right);?
???????? //合并?
???????? merge(data,left,center,right);?
?
???? }?
}? public void merge( int [] data, int left, int center, int right) {?
???? // TODO Auto-generated method stub?
???? int [] tmpArr= new int [data.length];?
???? int mid=center+ 1 ;?
???? //third记录中间数组的索引?
???? int third=left;?
???? int tmp=left;?
???? while (left<=center&&mid<=right){?
?
??? //从两个数组中取出最小的放入中间数组?
???????? if (data[left]<=data[mid]){?
???????????? tmpArr[third++]=data[left++];?
???????? } else {?
???????????? tmpArr[third++]=data[mid++];?
???????? }?
???? }?
???? //剩余部分依次放入中间数组?
???? while (mid<=right){?
???????? tmpArr[third++]=data[mid++];?
???? }?
???? while (left<=center){?
???????? tmpArr[third++]=data[left++];?
???? }?
???? //将中间数组中的内容复制回原数组?
???? while (tmp<=right){?
???????? data[tmp]=tmpArr[tmp++];?
???? }?
???? System.out.println(Arrays.toString(data));?
}? ?
} |
(1)基本思想:将所有待比较数值(正整数)统一为同样的数位长度,数位较短的数前面补零。然后,从最低位开始,依次进行一次排序。这样从最低位排序一直到最高位排序完成以后,数列就变成一个有序序列。
(2)实例:
(3)用java实现
import java.util.ArrayList;?
import java.util.List;?
?
public class radixSort {?
???? int a[]={ 49 , 38 , 65 , 97 , 76 , 13 , 27 , 49 , 78 , 34 , 12 , 64 , 5 , 4 , 62 , 99 , 98 , 54 , 101 , 56 , 17 , 18 , 23 , 34 , 15 , 35 , 25 , 53 , 51 };?
public radixSort(){?
???? sort(a);?
???? for ( int i= 0 ;i<a.length;i++)?
???????? System.out.println(a[i]);?
}? public ? void sort( int [] array){????
?
???????????? //首先确定排序的趟数;????
???????? int max=array[ 0 ];????
???????? for ( int i= 1 ;i<array.length;i++){????
??????????????? if (array[i]>max){????
??????????????? max=array[i];????
??????????????? }????
???????????? }????
?
???? int time= 0 ;????
??????????? //判断位数;????
???????????? while (max> 0 ){????
??????????????? max/= 10 ;????
???????????????? time++;????
???????????? }????
?
???????? //建立10个队列;????
???????????? List<ArrayList> queue= new ArrayList<ArrayList>();????
???????????? for ( int i= 0 ;i< 10 ;i++){????
???????????????? ArrayList<Integer> queue1= new ArrayList<Integer>();??
???????????????? queue.add(queue1);????
???????? }????
?
???????????? //进行time次分配和收集;????
???????????? for ( int i= 0 ;i<time;i++){????
?
???????????????? //分配数组元素;????
??????????????? for ( int j= 0 ;j<array.length;j++){????
???????????????????? //得到数字的第time+1位数;??
??????????????????? int x=array[j]%( int )Math.pow( 10 , i+ 1 )/( int )Math.pow( 10 , i);?
??????????????????? ArrayList<Integer> queue2=queue.get(x);?
??????????????????? queue2.add(array[j]);?
??????????????????? queue.set(x, queue2);?
???????????? }????
???????????????? int count= 0 ; //元素计数器;????
???????????? //收集队列元素;????
???????????????? for ( int k= 0 ;k< 10 ;k++){??
???????????????? while (queue.get(k).size()> 0 ){?
???????????????????? ArrayList<Integer> queue3=queue.get(k);?
???????????????????????? array[count]=queue3.get( 0 );????
???????????????????????? queue3.remove( 0 );?
???????????????????? count++;?
?????????????? }????
???????????? }????
?????????? }????
?
??? }???
?
} ?
|
原文:http://fuyi68615.iteye.com/blog/2179544