首页 > 其他 > 详细

[Everyday Mathematics]20150301

时间:2015-01-26 08:49:39      阅读:296      评论:0      收藏:0      [点我收藏+]

设 $f(x)$ 在 $[-1,1]$ 上有任意阶导数, $f^{(n)}(0)=0$, 其中 $n$ 是任意正整数, 且存在 $C>0$, $$\bex |f^{(n)}(x)|\leq C^nn!,\quad \forall\ n\in\bbN,\quad \forall\ x\in[-1,1]. \eex$$ 试证: $f\equiv 0$.

[Everyday Mathematics]20150301

原文:http://www.cnblogs.com/zhangzujin/p/4249367.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!