strassen
// strassen.h #ifndef STRASSEN_HH #define STRASSEN_HH #include <iostream> #include <iomanip> template<typename T> class Strassen_class{ public: void ADD(T** MatrixA, T** MatrixB, T** MatrixResult, int MatrixSize ); void SUB(T** MatrixA, T** MatrixB, T** MatrixResult, int MatrixSize ); void MUL(T** MatrixA, T** MatrixB, T** MatrixResult, int MatrixSize ); // 朴素算法实现 void FillMatrix( T** MatrixA, T** MatrixB, int length); // A,B矩阵赋值 void PrintMatrix(T **MatrixA,int MatrixSize); // 打印矩阵 void Strassen(int N, T **MatrixA, T **MatrixB, T **MatrixC); // Strassen算法实现 }; template<typename T> void Strassen_class<T>::ADD(T** MatrixA, T** MatrixB, T** MatrixResult, int MatrixSize) { for (int i = 0; i < MatrixSize; i++) { for (int j = 0; j < MatrixSize; j++) { MatrixResult[i][j] = MatrixA[i][j] + MatrixB[i][j]; } } } template<typename T> void Strassen_class<T>::SUB(T** MatrixA, T** MatrixB, T** MatrixResult, int MatrixSize) { for ( int i = 0; i < MatrixSize; i++) { for ( int j = 0; j < MatrixSize; j++) { MatrixResult[i][j] = MatrixA[i][j] - MatrixB[i][j]; } } } template<typename T> void Strassen_class<T>::MUL(T** MatrixA, T** MatrixB, T** MatrixResult, int MatrixSize) { for (int i = 0; i < MatrixSize; i++) { for (int j = 0; j < MatrixSize; j++) { MatrixResult[i][j] = 0; for (int k = 0; k < MatrixSize; k++) { MatrixResult[i][j] = MatrixResult[i][j] + MatrixA[i][k] * MatrixB[k][j]; } } } } /* c++使用二维数组,申请动态内存方法 申请 int **A; A = new int *[desired_array_row]; for ( int i = 0; i < desired_array_row; i++) A[i] = new int [desired_column_size]; 释放 for ( int i = 0; i < your_array_row; i++) delete [] A[i]; delete[] A; */ template<typename T> void Strassen_class<T>::Strassen(int N, T** MatrixA, T** MatrixB, T** MatrixC) { int HalfSize = N / 2; int newSize = N / 2; if (N <= 64) //分治门槛,小于这个值时不再进行递归计算,而是采用常规矩阵计算方法 { MUL(MatrixA, MatrixB, MatrixC, N); } else { T** A11; T** A12; T** A21; T** A22; T** B11; T** B12; T** B21; T** B22; T** C11; T** C12; T** C21; T** C22; T** M1; T** M2; T** M3; T** M4; T** M5; T** M6; T** M7; T** AResult; T** BResult; // making a 1 diminsional pointer based array. A11 = new T*[newSize]; A12 = new T*[newSize]; A21 = new T*[newSize]; A22 = new T*[newSize]; B11 = new T*[newSize]; B12 = new T*[newSize]; B21 = new T*[newSize]; B22 = new T*[newSize]; C11 = new T*[newSize]; C12 = new T*[newSize]; C21 = new T*[newSize]; C22 = new T*[newSize]; M1 = new T*[newSize]; M2 = new T*[newSize]; M3 = new T*[newSize]; M4 = new T*[newSize]; M5 = new T*[newSize]; M6 = new T*[newSize]; M7 = new T*[newSize]; AResult = new T*[newSize]; BResult = new T*[newSize]; int newLength = newSize; //making that 1 dimensional pointer based array , a 2D pointer based array for ( int i = 0; i < newSize; i++) { A11[i] = new T[newLength]; A12[i] = new T[newLength]; A21[i] = new T[newLength]; A22[i] = new T[newLength]; B11[i] = new T[newLength]; B12[i] = new T[newLength]; B21[i] = new T[newLength]; B22[i] = new T[newLength]; C11[i] = new T[newLength]; C12[i] = new T[newLength]; C21[i] = new T[newLength]; C22[i] = new T[newLength]; M1[i] = new T[newLength]; M2[i] = new T[newLength]; M3[i] = new T[newLength]; M4[i] = new T[newLength]; M5[i] = new T[newLength]; M6[i] = new T[newLength]; M7[i] = new T[newLength]; AResult[i] = new T[newLength]; BResult[i] = new T[newLength]; } // splitting input Matrices, into 4 sub matrices each. for (int i = 0; i < N / 2; i++) { for (int j = 0; j < N / 2; j++) { A11[i][j] = MatrixA[i][j]; A12[i][j] = MatrixA[i][j + N / 2]; A21[i][j] = MatrixA[i + N / 2][j]; A22[i][j] = MatrixA[i + N / 2][j + N / 2]; B11[i][j] = MatrixB[i][j]; B12[i][j] = MatrixB[i][j + N / 2]; B21[i][j] = MatrixB[i + N / 2][j]; B22[i][j] = MatrixB[i + N / 2][j + N / 2]; } } // here we calculate M1..M7 matrices . // M1[][] ADD(A11, A22, AResult, HalfSize); ADD(B11, B22, BResult, HalfSize); // p5=(a+d)*(e+h) Strassen(HalfSize, AResult, BResult, M1); // now that we need to multiply this , we use the strassen itself . //M2[][] ADD(A21, A22, AResult, HalfSize); // M2=(A21+A22)B11 p3=(c+d)*e Strassen(HalfSize, AResult, B11, M2); // Mul(AResult,B11,M2); //M3[][] SUB(B12, B22, BResult, HalfSize); // M3=A11(B12-B22) p1=a*(f-h) Strassen(HalfSize, A11, BResult, M3); // Mul(A11,BResult,M3); //M4[][] SUB(B21, B11, BResult, HalfSize); // M4=A22(B21-B11) p4=d*(g-e) Strassen(HalfSize, A22, BResult, M4); // Mul(A22,BResult,M4); //M5[][] ADD(A11, A12, AResult, HalfSize); // M5=(A11+A12)B22 p2=(a+b)*h Strassen(HalfSize, AResult, B22, M5); // Mul(AResult,B22,M5); //M6[][] SUB(A21, A11, AResult, HalfSize); ADD(B11, B12, BResult, HalfSize); // M6=(A21-A11)(B11+B12) p7=(c-a)(e+f) Strassen(HalfSize, AResult, BResult, M6); // Mul(AResult,BResult,M6); //M7[][] SUB(A12, A22, AResult, HalfSize); ADD(B21, B22, BResult, HalfSize); // M7=(A12-A22)(B21+B22) p6=(b-d)*(g+h) Strassen(HalfSize, AResult, BResult, M7); // Mul(AResult,BResult,M7); // C11 = M1 + M4 - M5 + M7; ADD(M1, M4, AResult, HalfSize); SUB(M7, M5, BResult, HalfSize); ADD(AResult, BResult, C11, HalfSize); // C12 = M3 + M5; ADD(M3, M5, C12, HalfSize); // C21 = M2 + M4; ADD(M2, M4, C21, HalfSize); // C22 = M1 + M3 - M2 + M6; ADD(M1, M3, AResult, HalfSize); SUB(M6, M2, BResult, HalfSize); ADD(AResult, BResult, C22, HalfSize); // at this point , we have calculated the c11..c22 matrices, and now we are going to // put them together and make a unit matrix which would describe our resulting Matrix. // 组合小矩阵到一个大矩阵 for (int i = 0; i < N / 2 ; i++) { for (int j = 0 ; j < N / 2 ; j++) { MatrixC[i][j] = C11[i][j]; MatrixC[i][j + N / 2] = C12[i][j]; MatrixC[i + N / 2][j] = C21[i][j]; MatrixC[i + N / 2][j + N / 2] = C22[i][j]; } } // 释放矩阵内存空间 for (int i = 0; i < newLength; i++) { delete[] A11[i]; delete[] A12[i]; delete[] A21[i]; delete[] A22[i]; delete[] B11[i]; delete[] B12[i];delete[] B21[i]; delete[] B22[i]; delete[] C11[i]; delete[] C12[i]; delete[] C21[i]; delete[] C22[i]; delete[] M1[i]; delete[] M2[i]; delete[] M3[i]; delete[] M4[i]; delete[] M5[i]; delete[] M6[i]; delete[] M7[i]; delete[] AResult[i]; delete[] BResult[i] ; } delete[] A11; delete[] A12; delete[] A21; delete[] A22; delete[] B11; delete[] B12; delete[] B21; delete[] B22; delete[] C11; delete[] C12; delete[] C21; delete[] C22; delete[] M1; delete[] M2; delete[] M3; delete[] M4; delete[] M5; delete[] M6; delete[] M7; delete[] AResult; delete[] BResult ; }//end of else } template<typename T> void Strassen_class<T>::FillMatrix(T** MatrixA, T** MatrixB, int length) { for(int row = 0; row < length; row++) { for(int column = 0; column < length; column++) { // MatrixB[row][column] = (MatrixA[row][column] = rand() % 5); MatrixB[row][column] = (MatrixA[row][column] = rand() % 2); //matrix2[row][column] = rand() % 2;//ba hazfe in khat 50% afzayeshe soorat khahim dasht } } } template<typename T> void Strassen_class<T>::PrintMatrix(T** MatrixA, int MatrixSize) { std::cout.setf(std::ios::right, std::ios::adjustfield); std::cout.fill(‘0‘); std::cout << std::endl; for(int row = 0; row < MatrixSize; row++) { for(int column = 0; column < MatrixSize; column++) { std::cout << std::setw(4) << MatrixA[row][column] << "\t"; if ((column + 1) % ((MatrixSize)) == 0) std::cout << std::endl; } } std::cout << std::endl; } #endif
// strassen.cpp #include <ctime> #include "strassen.h" using std::cout; using std::cin; using std::endl; int main() { Strassen_class<int> stra; // 定义Strassen_class类对象 int MatrixSize = 0; int** MatrixA; // 存放矩阵A int** MatrixB; // 存放矩阵B int** MatrixC; // 存放结果矩阵 clock_t startTime_For_Normal_Multipilication ; clock_t endTime_For_Normal_Multipilication ; clock_t startTime_For_Strassen ; clock_t endTime_For_Strassen ; srand(static_cast<unsigned int>(time(0))); cout << "\n请输入矩阵大小(必须是2的幂指数值(例如:32,64,512,..): "; cin >> MatrixSize; cout << endl; int N = MatrixSize; // for readiblity. // 申请内存 MatrixA = new int*[MatrixSize]; MatrixB = new int*[MatrixSize]; MatrixC = new int*[MatrixSize]; for (int i = 0; i < MatrixSize; i++) { MatrixA[i] = new int[MatrixSize]; MatrixB[i] = new int[MatrixSize]; MatrixC[i] = new int[MatrixSize]; } stra.FillMatrix(MatrixA, MatrixB, MatrixSize); // 矩阵赋值 //*******************conventional multiplication test cout << "朴素矩阵算法开始时钟: " << (startTime_For_Normal_Multipilication = clock()); stra.MUL(MatrixA, MatrixB, MatrixC, MatrixSize); // 朴素矩阵相乘算法 T(n) = O(n^3) cout << "\n朴素矩阵算法结束时钟: " << (endTime_For_Normal_Multipilication = clock()); cout << "\n矩阵运算结果... \n"; stra.PrintMatrix(MatrixC, MatrixSize); //*******************Strassen multiplication test cout << "\nStrassen算法开始时钟: " << (startTime_For_Strassen = clock()); stra.Strassen(N, MatrixA, MatrixB, MatrixC); // strassen矩阵相乘算法 cout << "\nStrassen算法结束时钟: " << (endTime_For_Strassen = clock()); cout << "\n矩阵运算结果... \n"; stra.PrintMatrix(MatrixC, MatrixSize); cout << "矩阵大小 " << MatrixSize; cout << "\n朴素矩阵算法: " << (endTime_For_Normal_Multipilication - startTime_For_Normal_Multipilication) << " Clocks.." << (endTime_For_Normal_Multipilication - startTime_For_Normal_Multipilication) / CLOCKS_PER_SEC << " Sec"; cout << "\nStrassen算法: " << (endTime_For_Strassen - startTime_For_Strassen) << " Clocks.." << (endTime_For_Strassen - startTime_For_Strassen) / CLOCKS_PER_SEC << " Sec\n"; getchar(); return 0; }
strassen
原文:http://www.cnblogs.com/sunyongjie1984/p/4271049.html