Note: m and n will be at most 100.
这题的做法和前面的unique path是一样的,都是用的动态规划。不同之处在于需要判断有没有点为1.
直接上代码:
class Solution:
# @param obstacleGrid, a list of lists of integers
# @return an integer
def uniquePathsWithObstacles(self, obstacleGrid):
rown=len(obstacleGrid)
coln=len(obstacleGrid[0])
dp=[[0 for i in range(coln)] for j in range(rown)]
if obstacleGrid[0][0]!=1:
dp[0][0]=1
for row in range(1,rown):
if obstacleGrid[row][0]!=1 and dp[row-1][0]==1:
dp[row][0]=1
else:
break
for col in range(1,coln):
if obstacleGrid[0][col]!=1 and dp[0][col-1]==1:
dp[0][col]=1
else:
break
for row in range(1,rown):
for col in range(1,coln):
if obstacleGrid[row][col]==1:
dp[row][col]=0
else:
dp[row][col]=dp[row-1][col]+dp[row][col-1]
return dp[rown-1][coln-1]63. Unique Path II Leetcode Python
原文:http://blog.csdn.net/hyperbolechi/article/details/43479179