Your algorithm‘s runtime complexity must be in the order of O(log n).
If the target is not found in the array, return [-1, -1]
.
For example,
Given [5, 7, 7, 8, 8, 10]
and target value 8,
return [3, 4]
.
这道题在二分搜索的基础上做个修改:找出左边界与右边界。
找左边界:当A[mid]=target时,继续向左找,直到left>right
找右边界:当A[mid]=target时,继续向右找,直到left>right
如果target不存在的话,左边界的值会大于右边界的值。
下面给出一个找左边界的图例:
最后贴上代码:
class Solution { public: vector<int> searchRange(int A[], int n, int target) { vector<int> vec(2, -1); if (n == 0){ return vec; } int left = 0, right = n; int mid = 0; while (left < right){ mid = (left + right) / 2; if (A[mid] >= target) right = mid; else left = mid + 1; } int l = left; left = 0; right = n; while (left < right){ mid = (left + right) / 2; if (A[mid] <= target) left = mid + 1; else right = mid; } int r = right-1; if (l <= r){ vec[0] = l; vec[1] = r; } return vec; } };
原文:http://blog.csdn.net/kaitankedemao/article/details/43526199