Your algorithm‘s runtime complexity must be in the order of O(log n).
If the target is not found in the array, return [-1, -1].
For example,
Given [5, 7, 7, 8, 8, 10] and target value 8,
return [3, 4].
这道题在二分搜索的基础上做个修改:找出左边界与右边界。
找左边界:当A[mid]=target时,继续向左找,直到left>right
找右边界:当A[mid]=target时,继续向右找,直到left>right
如果target不存在的话,左边界的值会大于右边界的值。
下面给出一个找左边界的图例:
最后贴上代码:
class Solution {
public:
vector<int> searchRange(int A[], int n, int target) {
vector<int> vec(2, -1);
if (n == 0){
return vec;
}
int left = 0, right = n;
int mid = 0;
while (left < right){
mid = (left + right) / 2;
if (A[mid] >= target)
right = mid;
else
left = mid + 1;
}
int l = left;
left = 0;
right = n;
while (left < right){
mid = (left + right) / 2;
if (A[mid] <= target)
left = mid + 1;
else
right = mid;
}
int r = right-1;
if (l <= r){
vec[0] = l;
vec[1] = r;
}
return vec;
}
};原文:http://blog.csdn.net/kaitankedemao/article/details/43526199