http://acm.hdu.edu.cn/showproblem.php?pid=4328
2 1 1 B 3 3 BBR RBB BBB
Case #1: 4 Case #2: 8
/** hdu4328 最大子矩阵问题O(n*m) 题目大意:给定一个n*m的棋盘有红黑两色,让截取一个周长最大矩形,该矩形要么全是黑色,要么全是红色,要么黑色和红色交替 见题目附图。 解题思路:如果遍历每一个矩阵是不可能的,时间O(n*n*n),因此我们采用扫描的方法(白书P51)。对于交替的矩形我们把(i+j) 为奇数的格子翻转颜色,那样就可以转换成全是一样颜色了,然后边成把(i+j)为偶数的翻转,四种情况取最大即可。复杂度O(n*m) */ #include <stdio.h> #include <string.h> #include <algorithm> #include <iostream> using namespace std; const int maxn=1005; int mat[maxn][maxn],mat1[maxn][maxn],up[maxn][maxn],lef[maxn][maxn],rig[maxn][maxn]; char a[maxn][maxn]; int n,m; int get() { int ans=0; for(int i=0; i<m; i++) { int lo=-1,ro=n; for(int j=0; j<n; j++) { if(mat[i][j]==1) { up[i][j]=lef[i][j]=0; lo=j; } else { up[i][j]=i==0?1:up[i-1][j]+1; lef[i][j]=i==0?lo+1:max(lef[i-1][j],lo+1); } } for(int j=n-1; j>=0; j--) { if(mat[i][j]==1) { rig[i][j]=n; ro=j; } else { rig[i][j]=i==0?ro-1:min(rig[i-1][j],ro-1); ans=max(ans,up[i][j]*2+2*(rig[i][j]-lef[i][j]+1)); } } } return ans; } int main() { int tt=0,T; scanf("%d",&T); while(T--) { scanf("%d%d",&m,&n); for(int i=0; i<m; i++) { scanf("%s",a[i]); } for(int i=0; i<m; i++) { for(int j=0; j<n; j++) { if(a[i][j]=='R') mat1[i][j]=mat[i][j]=1; else mat1[i][j]=mat[i][j]=0; } } int ans=-1; ///1 ans=max(ans,get()); ///2 for(int i=0; i<m; i++) { for(int j=0; j<n; j++) { if(mat1[i][j]==1) mat[i][j]=0; else mat[i][j]=1; } } ans=max(ans,get()); ///3 for(int i=0; i<m; i++) { for(int j=0; j<n; j++) { if((i+j)%2==1) { if(mat1[i][j]==1) mat[i][j]=0; else mat[i][j]=1; } else mat[i][j]=mat1[i][j]; } } /* for(int i=0; i<m; i++) { for(int j=0; j<n; j++) { printf("%d",mat[i][j]); } printf("\n"); } printf("\n");*/ ans=max(ans,get()); ///4 for(int i=0; i<m; i++) { for(int j=0; j<n; j++) { if((i+j)%2==0) { if(mat1[i][j]==1) mat[i][j]=0; else mat[i][j]=1; } else mat[i][j]=mat1[i][j]; } } /*for(int i=0; i<m; i++) { for(int j=0; j<n; j++) { printf("%d",mat[i][j]); } printf("\n"); } printf("\n");*/ ans=max(ans,get()); printf("Case #%d: %d\n",++tt,ans); } return 0; } /** 100 3 3 BBR RBR BBB 2 2 BR RB 2 2 BB RR 2 2 BB BB */
原文:http://blog.csdn.net/lvshubao1314/article/details/43560963