There is an integer array which has the following features: * The numbers in adjacent positions are different. * A[0] < A[1] && A[A.length - 2] > A[A.length - 1]. We define a position P is a peek if A[P] > A[P-1] && A[P] > A[P+1]. Find a peak in this array. Return the index of the peak. Note The array may contains multiple peeks, find any of them. Example [1, 2, 1, 3, 4, 5, 7, 6] return index 1 (which is number 2) or 6 (which is number 7) Challenge Time complexity O(logN)
跟Leetcode Find Peak Element一样
有一些考虑:因为梯度下降法是要比较m、m+1、m-1三个index大小,因此为保证不outofbound,令l = 1, r = A.length-2; 这样也可以maintain一个性质:l、r始终在peak element可能的区域内
1 class Solution { 2 /** 3 * @param A: An integers array. 4 * @return: return any of peek positions. 5 */ 6 public int findPeak(int[] A) { 7 if (A==null || A.length<3) return -1; 8 int l = 1; 9 int r = A.length - 2; 10 while (l <= r) { 11 int m = (l + r) / 2; 12 if (A[m]>A[m+1] && A[m]>A[m-1]) return m; 13 else if (A[m]<A[m+1] && A[m]>A[m-1]) { 14 l = m + 1; 15 } 16 else { 17 r = m - 1; 18 } 19 } 20 return -2; 21 } 22 }
原文:http://www.cnblogs.com/EdwardLiu/p/4276933.html