Huge input, scanf is recommended.
题意就不用讲了,是中文的.
开始做的时候没有思路.看了题解后,知道了这题 可以用同余判重来做.
我们都知道 (n+m)%mod =(n%mod+m%mod)%mod
对于这题 也可以类似得得到以下的结论
假如一个2位数 从高位到低位 依次是 ab, ;
那么 这个对这个数取模 , 相当于 (a*10+b)%mod 相当于 ((a%mod)*10+b)%mod,,这里的mod 就是n,10就是进制c.
懂了这个基本就解决这题的一半了.
然后我们要搜索, 从高位构造到低位, 不停的把高位 数取模.然后 用 ((a%mod)*10+b)%mod这个式子来 求 下一位的模.
而得到的任何一个模都要是最小的数得到的,因为 我们搜索的过程中 数字是从 小到大的 ,那么最先得到的余就是最好的.后面的再搜到就不用了.
last初始化为-1,只要last[i] !=-1,那么 余i 已经有过了,所以就不会再入队.这就是取余判重.
#include<stdio.h>
#include<string.h>
#include<queue>
#include<algorithm>
using namespace std;
char num[6000];// 数字 dig
int last[6000];//记录之前的 如: last[i]=j i这个余的结果是下标j的数推过来得
int dig[20];//输入的 可行的 数
int len[6000];//记录到i这个余 数位的长度,因为题意对此有规定要 小于500
void find(int tem)
{
if(last[tem]!=0)
find(last[tem]);
printf("%c",num[tem]);
}
void bfs(int n,int c,int m)
{
sort(dig,dig+m);
queue<int> q;
memset(last,-1,sizeof last);
if(n==0)
{
if(dig[0]==0) printf("0\n");
else printf("give me the bomb please\n");
return ;
}
for(int i=0;i<m;i++)
{
if(dig[i])//第一个不能为0;
{
int tem=dig[i]%n;
if(last[tem]==-1)
{
q.push(tem);
if(dig[i]<=9)
num[tem]=dig[i]+'0';
else
num[tem]=dig[i]+'A'-10;
last[tem]=0;
len[tem]=1;
}
}
}
int now;
while(!q.empty())
{
now=q.front();
q.pop();
if(now==0) break;
if(len[now]==500)
{
printf("give me the bomb please\n");
return ;
}
for(int i=0;i<m;i++)
{
int tem=(now*c+dig[i])%n;
if(last[tem]==-1)
{
last[tem]=now;
if(dig[i]<=9)
num[tem]=dig[i]+'0';
else
num[tem]=dig[i]+'A'-10;
q.push(tem);
len[tem]=len[now]+1;
}
}
}
if(now!=0)
{
printf("give me the bomb please\n");
return ;
}
find(0);
puts("");
return ;
}
int main()
{
int t,n,c;// n 的倍数 c进制
int m;//m个可选数
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&c);
scanf("%d",&m);
for(int i=0;i<m;i++)
{
char tem[2];
scanf("%s",tem);
if(tem[0]>='0'&&tem[0]<='9')
dig[i]=tem[0]-'0';
else
dig[i]=tem[0]-'A'+10;
}
bfs(n,c,m);
}
return 0;
}
/*
3
22 10
3
7 0 1
*/
原文:http://blog.csdn.net/u013532224/article/details/43567643