1、定义本质:
红黑树是一种自平衡二叉查找树,是在计算机科学中用到的一种数据结构,典型的用途是实现关联数组。它是复杂的,但它的操作有着良好的最坏情况运行时间,并且在实践中是高效的:
它可以在O(log n)时间内做查找,插入和删除,这里的n是树中元素的数目。
2、应用实例:
它的统计性能要好于平衡二叉树(AVL-树),红黑树在很多地方都有应用。在C++ STL中,很多部分(目前包括set,
multiset, map, multimap)应用了红黑树的变体(SGI STL中的红黑树有一些变化,这些修改提供了更好的性能,以及对set操作的支持)。其他平衡树还有:AVL,SBT,伸展树,TREAP 等等。
3、具体性质:
红黑树是每个节点都带有颜色属性的二叉查找树,颜色或红色或黑色。在二叉查找树强制一般要求以外,对于任何有效的红黑树我们增加了如下的额外要求:
性质1. 节点是红色或黑色。
性质2. 根节点是黑色。
性质3 每个叶节点(NIL节点,空节点)是黑色的。
性质4 每个红色节点的两个子节点都是黑色。(从每个叶子到根的所有路径上不能有两个连续的红色节点)
性质5. 从任一节点到其每个叶子的所有路径都包含相同数目的黑色节点。
这些约束强制了红黑树的关键性质: 从根到叶子的最长的可能路径不多于最短的可能路径的两倍长。结果是这个树大致上是平衡的。因为操作比如插入、删除和查找某个值的最坏情况时间都要求与树的高度成比例,这个在高度上的理论上限允许红黑树在最坏情况下都是高效的,而不同于普通的二叉查找树。
要知道为什么这些特性确保了这个结果,注意到性质4导致了路径不能有两个毗连的红色节点就足够了。最短的可能路径都是黑色节点,最长的可能路径有交替的红色和黑色节点。因为根据性质5所有最长的路径都有相同数目的黑色节点,这就表明了没有路径能多于任何其他路径的两倍长。
在很多树
数据结构的表示中,一个节点有可能只有一个子节点,而
叶子节点不包含数据。用这种范例表示红黑树是可能的,但是这会改变一些属性并使算法复杂。为此,本文中我们使用
"nil 叶子" 或"空(null)叶子",如上图所示,它不包含数据而只充当树在此结束的指示。这些节点在绘图中经常被省略,导致了这些树好象同上述原则相矛盾,而实际上不是这样。与此有关的结论是所有节点都有两个子节点,尽管其中的一个或两个可能是空叶子。
4、优势应用:
红黑树和AVL树一样都对插入时间、删除时间和查找时间提供了最好可能的最坏情况担保。这不只是使它们在时间敏感的应用如即时应用(real time application)中有价值,而且使它们有在提供最坏情况担保的其他
数据结构中作为建造板块的价值;例如,在计算几何中使用的很多数据结构都可以基于红黑树。
红黑树在
函数式
编程中也特别有用,在这里它们是最常用的持久
数据结构之一,它们用来构造
关联数组和集合,在突变之后它们能保持为以前的版本。除了O(log
n)的时间之外,红黑树的持久版本对每次插入或删除需要O(log n)的空间。
从multimap学习红黑树,布布扣,bubuko.com
从multimap学习红黑树
原文:http://blog.csdn.net/ghevinn/article/details/20612027