MLlib 是spark的可以扩展的机器学习库,由以下部分组成:通用的学习算法和工具类,包括分类,回归,聚类,协同过滤,降维,当然也包括调优的部分
MLlib当前在非常活跃的开发情况下,所以那些被标记成 Experimental
/DeveloperApi
在未来的发布种可能会被修改
依赖
如果你需要使用spark的python开发,你需要 NumPy version
1.4或以上版本.
当前最近版本1.2
个人认为当前1.2版本的最大的改进应该是发布了称为spark.ml的机器学习工具包,支持了pipeline的学习模式,即多个算法可以用不同参数以流水线的形式运行。在工业界的机器学习应用部署过程中,pipeline的工作模式是很常见的。新的ML工具包使用Spark的SchemaRDD来表示机器学习的数据集合,提供了Spark
SQL直接访问的接口。此外,在机器学习的算法方面,增加了两个基于树的方法,随机森林和梯度增强树。还有貌似性能上有优化,看过一篇DataBricks的ppt,据说1.2版本的算法在性能上比1.1版本平均快了3倍
参考资料