我们发现i ≥ sqrt(n)时,每次更新的乘数即ceil(n / i)是不变的
假设i * x更新了n以后,用(i + 1) * y更新,则
(i + 1) * y ≥ i * x =>
y ≥ x * i / (i + 1) =>
y ≥ x - x / (i + 1)
也即x < i + 1时, ceil(n / i)不变,此时i ≥ sqrt(n)
于是模拟一遍什么的就好啦~
1 /************************************************************** 2 Problem: 3858 3 User: rausen 4 Language: C++ 5 Result: Accepted 6 Time:112 ms 7 Memory:804 kb 8 ****************************************************************/ 9 10 #include <cstdio> 11 12 using namespace std; 13 typedef long long ll; 14 15 int tot; 16 ll n, k; 17 18 int main() { 19 ll i; 20 while (scanf("%lld%lld", &n, &k), n || k) { 21 for (i = 2; i <= k; ++i) { 22 ll tmp = (n + i - 1) / i; 23 if (tmp <= i) { 24 n = tmp * k; 25 break; 26 } 27 n = tmp * i; 28 } 29 printf("Case #%d: %lld\n", ++tot, n); 30 } 31 return 0; 32 }
BZOJ3858 Number Transformation
原文:http://www.cnblogs.com/rausen/p/4297717.html