首页 > 其他 > 详细

SGU[118] Digital Root

时间:2015-02-24 16:17:49      阅读:327      评论:0      收藏:0      [点我收藏+]

Description

描述

Let f(n) be a sum of digits for positive integer n. If f(n) is one-digit number then it is a digital root for n and otherwise digital root of n is equal to digital root of f(n). For example, digital root of 987 is 6. Your task is to find digital root for expression A1*A2*…*AN + A1*A2*…*AN-1 + … + A1*A2 + A1.

令f(n)表示正整数n的各个位上数字之和。如果f(n)是一个一位数,那么则是n的一个数字根,否i则,n的数字根等于f(n)的数字根。例如987的数字根为6。你的任务是求表达式A1 * A2 * ... * AN + A1 * A2 * ... * AN-1 + ... A1 * A2 + A1的数字根。

 

Input

输入

Input file consists of few test cases. There is K (1<=K<=5) in the first line of input.

Each test case is a line. Positive integer number N is written on the first place of test case (N<=1000). After it there are N positive integer numbers (sequence A). Each of this numbers is non-negative and not more than 109.

输入包含多组测试数据。输入的第一行为K (1 <= K <= 5),表示测试数据组数。

每组测试数据占一行,第一个整数N (N <= 1000)表示Ai的个数,接下来N个数表示Ai,保证Ai非负且不超过109


Output

输出

Write one line for every test case. On each line write digital root for given expression.

对于每组测数据据输出一行,表示给定表达式的数字根


Sample Input

样例输入

1

3 2 3 4


Sample Output

样例输出

5

 

Analysis

分析

结论题——f(n) ≡ n(mod 9)。

证明如下:

令n = a0 * 10p0 +  a1 * 10p1 + ... + am-1 * 101 + am * 100,其中n为m位数。

则n mod 9 = a0 + a1 + ... + am-1 + a= f(n),即f(n) ≡ n(mod 9)。

证毕。

需要注意的是,当n mod 9 == 0的时候,f(n) = 9。

读入的时候要先把数据mod 9,否则中间计算过程会超int。

 

Solution

解决方案

#include <iostream>

using namespace std;

const int MAX = 1024;

int pData[MAX];

int main()
{
	int T, N;
	cin >> T;
	for(int i = 1; i <= T; i++)
	{
		int ans = 0;
		cin >> N;
		for(int j = 1; j <= N; j++)
		{ cin >> pData[j]; pData[j] %= 9; }
		for(int j = 1; j <= N; j++)
		{
			int nTmp = 1;
			for(int k = 1; k <= j; k++)
			{
				nTmp *= pData[k];
				if(nTmp >= 9) { nTmp %= 9; }
			}
			ans += nTmp;
			if(ans >= 9) { ans %= 9; }
		}
		cout << (ans == 0 ? 9 : ans) << endl;
	}
}

  

又是一个数论结论,结论题有时候还是挺难想到的。

SGU[118] Digital Root

原文:http://www.cnblogs.com/Ivy-End/p/4298714.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!