题目链接:Codeforces 400E Inna and Binary Logic
题目大意:给出n和m,表示有n个数,m次修改,然后给出n个数的值a1[i],通过a1数组可以推断出a2数组,长的为a1的长度减一,接着a3、a4直到an(长度为1),ai[k] = ai-1[k] & ai-1[k+1].sun为所有数的和。每次修改有p和x两个值,表示将a1数组的第p个位置修改成x,输出修改后的sum。
解题思路:假设一开始计算好了sun,然后每一次修改的时候,x和t[p],只要考虑二进制的每个位即可,如果(x&(1<<i)) == (t[p]&(1<<i))那么不变;如果(x&(1<<i)) = 1, (t[p]&(1<<i))=0,那么就要加上s;否则减掉s;s的计算方法:从p往左,连续的l个数t[j]&(1<<i) = 1,往右连续r个数t[j]&(1<<i) = 1,s = (l + r + l*r) * (1<<i)。因为如果出现有一个t[j]&(1<<i) = 0,那么在它后面有多少个t&(1<<i) = 1也没有用。解决完修改的部分,初始值计算就是个问题了,一开始用o(n^2)的方法超时了,很费解。初始值计算,对于每个位i,遍历一遍数组,计算各个连续的片t&(1<<i) = 1的个数c,s += (c*(c+1)*(1<<i)).
#include <stdio.h> #include <string.h> #include <algorithm> #include <iostream> using namespace std; typedef long long ll; const int N = 1e5+5; int n, m, t[N]; ll s; void find(int k, ll& l, ll& r, int x) { l = r = 0; for (int i = x-1; i; i--) { if ((t[i]&k) == 0) break; l++; } for (int i = x+1; i <= n; i++) { if ((t[i]&k) == 0) break; r++; } } void solve (int p, int x, int y) { ll l, r; for (int i = 0; (1<<i) < N; i++) { int k = (1<<i); if ((x&k) == (y&k)) continue; find(k, l, r, p); ll u = (l * r + l + r + 1) * (ll)k; if (x&k) { s += u; } else { s -= u; } } } void init () { s = 0; scanf("%d%d", &n, &m); for (int i = 1; i <= n; i++) scanf("%d", &t[i]); for (int i = 0; (1<<i) < N; i++) { int k = (1<<i); ll c = 0; for (int j = 1; j <= n; j++) { if (t[j]&k) c++; else { if (c) s += (c*(c+1)*(ll)k/2); c = 0; } } if (c) s += (c*(c+1)*(ll)k/2); } } int main () { init (); int p, x; for (int i = 0; i < m; i++) { scanf("%d %d", &p, &x); solve (p, x, t[p]); t[p] = x; cout << s << endl; } return 0; }
Codeforces 400E Inna and Binary Logic(位运算+暴力),布布扣,bubuko.com
Codeforces 400E Inna and Binary Logic(位运算+暴力)
原文:http://blog.csdn.net/keshuai19940722/article/details/20702935