题目链接:点击打开链接
题意:给定n m k
下面是n*m的矩阵
最多可以操作k次,每次操作可以使任意一列上所有的数 -= 1,( 0还是0)
要求得到连续最多的行数(每行里的整数都为0),输出任意一个方案(在每一列上操作的次数)
思路:
把每列单独考虑
枚举每行,二分找这行往下最多能清空的行数,
RMQ维护一列的最大值。
import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.PrintWriter; import java.math.BigInteger; import java.text.DecimalFormat; import java.util.ArrayDeque; import java.util.ArrayList; import java.util.Arrays; import java.util.Collection; import java.util.Collections; import java.util.Comparator; import java.util.Deque; import java.util.HashMap; import java.util.Iterator; import java.util.LinkedList; import java.util.Map; import java.util.PriorityQueue; import java.util.Scanner; import java.util.Stack; import java.util.StringTokenizer; import java.util.TreeMap; import java.util.TreeSet; import java.util.Queue; import java.io.File; import java.io.FileInputStream; import java.io.FileNotFoundException; import java.io.FileOutputStream; public class Main { int n, m, k; class RMQ{ int[][] d = new int[N*2][20]; int[] A = new int[N]; int n; void RMQ_init() { for (int i = 1; i <= n; ++i) d[i][0] = A[i]; for (int j = 1; (1 << j) <= n; ++j) for (int i = 1; i + j - 1 <= n; ++i) { d[i][j] = max(d[i][j - 1], d[i + (1 << (j - 1))][j - 1]); } } int RMQ(int L, int R) { int k = 0; while ((1 << (k + 1)) <= R - L + 1) ++k; return max(d[L][k], d[R - (1 << k) + 1][k]); } } RMQ[] x = new RMQ[6]; int[] aaa = new int[6]; void work() throws Exception{ n = Int(); m = Int(); k = Int(); for(int i = 1; i <= m; i++){ x[i] = new RMQ(); } for(int i = 1; i <= n; i++){ for(int j = 1; j <= m; j++) x[j].A[i] = Int(); } for(int i = 1; i <= m; i++){ x[i].n = n; x[i].RMQ_init(); } int ans = 0; for(int i = 1; i <= n; i++){ int l = i, r = n; while(l<=r){ int mid = (l+r)>>1; int sum = 0; for(int j = 1; j <= m; j++) sum += x[j].RMQ(i, mid); if(sum<=k){ l = mid+1; if(ans<mid-i+1){ ans=mid-i+1; for(int j = 1; j <= m; j++)aaa[j] = x[j].RMQ(i, mid); } } else r = mid-1; } } for(int i = 1; i <= m; i++) out.print(aaa[i]+" "); } public static void main(String[] args) throws Exception{ Main wo = new Main(); in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); // in = new BufferedReader(new InputStreamReader(new FileInputStream(new File("input.txt")))); // out = new PrintWriter(new File("output.txt")); wo.work(); out.close(); } static int N = 100000+5; static int M = 101; DecimalFormat df=new DecimalFormat("0.0000"); static int inf = (int)1e8; static long inf64 = (long) 1e18*2; static double eps = 1e-8; static double Pi = Math.PI; static int mod = (int)1e9 + 7 ; private String Next() throws Exception{ while (str == null || !str.hasMoreElements()) str = new StringTokenizer(in.readLine()); return str.nextToken(); } private int Int() throws Exception{ return Integer.parseInt(Next()); } private long Long() throws Exception{ return Long.parseLong(Next()); } private double Double() throws Exception{ return Double.parseDouble(Next()); } StringTokenizer str; static Scanner cin = new Scanner(System.in); static BufferedReader in; static PrintWriter out; /* class Edge{ int from, to, dis, nex; Edge(){} Edge(int from, int to, int dis, int nex){ this.from = from; this.to = to; this.dis = dis; this.nex = nex; } } Edge[] edge = new Edge[M<<1]; int[] head = new int[N]; int edgenum; void init_edge(){for(int i = 0; i < N; i++)head[i] = -1; edgenum = 0;} void add(int u, int v, int dis){ edge[edgenum] = new Edge(u, v, dis, head[u]); head[u] = edgenum++; }/**/ int upper_bound(int[] A, int l, int r, int val) {// upper_bound(A+l,A+r,val)-A; int pos = r; r--; while (l <= r) { int mid = (l + r) >> 1; if (A[mid] <= val) { l = mid + 1; } else { pos = mid; r = mid - 1; } } return pos; } int Pow(int x, int y) { int ans = 1; while (y > 0) { if ((y & 1) > 0) ans *= x; y >>= 1; x = x * x; } return ans; } double Pow(double x, int y) { double ans = 1; while (y > 0) { if ((y & 1) > 0) ans *= x; y >>= 1; x = x * x; } return ans; } int Pow_Mod(int x, int y, int mod) { int ans = 1; while (y > 0) { if ((y & 1) > 0) ans *= x; ans %= mod; y >>= 1; x = x * x; x %= mod; } return ans; } long Pow(long x, long y) { long ans = 1; while (y > 0) { if ((y & 1) > 0) ans *= x; y >>= 1; x = x * x; } return ans; } long Pow_Mod(long x, long y, long mod) { long ans = 1; while (y > 0) { if ((y & 1) > 0) ans *= x; ans %= mod; y >>= 1; x = x * x; x %= mod; } return ans; } int gcd(int x, int y){ if(x>y){int tmp = x; x = y; y = tmp;} while(x>0){ y %= x; int tmp = x; x = y; y = tmp; } return y; } int max(int x, int y) { return x > y ? x : y; } int min(int x, int y) { return x < y ? x : y; } double max(double x, double y) { return x > y ? x : y; } double min(double x, double y) { return x < y ? x : y; } long max(long x, long y) { return x > y ? x : y; } long min(long x, long y) { return x < y ? x : y; } int abs(int x) { return x > 0 ? x : -x; } double abs(double x) { return x > 0 ? x : -x; } long abs(long x) { return x > 0 ? x : -x; } boolean zero(double x) { return abs(x) < eps; } double sin(double x){return Math.sin(x);} double cos(double x){return Math.cos(x);} double tan(double x){return Math.tan(x);} double sqrt(double x){return Math.sqrt(x);} }
CodeForces 514D R2D2 and Droid Army RMQ+二分
原文:http://blog.csdn.net/qq574857122/article/details/44007327