首页 > 其他 > 详细

hdu5183 hush

时间:2015-03-11 23:27:16      阅读:291      评论:0      收藏:0      [点我收藏+]

http://acm.hdu.edu.cn/showproblem.php?pid=5183

Problem Description
When given an array (a0,a1,a2,?an?1) and an integer K, you are expected to judge whether there is a pair (i,j)(0ij<n) which makes that NP?sum(i,j) equals to K true. Here NP?sum(i,j)=ai?ai+1+ai+2+?+(?1)j?iaj
 

Input
Multi test cases. In the first line of the input file there is an integer T indicates the number of test cases.
In the next 2?T lines, it will list the data for each test case.
Each case occupies two lines, the first line contain two integers n and K which are mentioned above.
The second line contain (a0,a1,a2,?an?1)separated by exact one space.
[Technical Specification]
All input items are integers.
0<T25,1n1000000,?1000000000ai1000000000,?1000000000K1000000000
 

Output
For each case,the output should occupies exactly one line. The output format is Case #id: ans, here id is the data number starting from 1; ans is “Yes.” or “No.” (without quote) according to whether you can find (i,j) which makes PN?sum(i,j) equals to K.
See the sample for more details.
 

Sample Input
2 1 1 1 2 1 -1 0
 

Sample Output
Case #1: Yes. Case #2: No.
Hint
If input is huge, fast IO method is recommended.
/**
hdu 5183  hash
题目大意: NP?sum(i,j)=ai?ai+1+ai+2+?+(?1)j?iaj,求给定序列中是否有一个子序列得数为k
解题思路:题目数据很大,只能用O(n)的复杂度。看了杭电的解题报告后,很久才理解。我求将序列的后缀和表示出来(sum[0]-sum[1]+sum[2]-……)
          然后从后往前枚举所求区间的第一个位置i,若为奇数那么在h1的哈希表中寻找是不是存在sum[i]-k,如果没有将sum[i]插入哈希表。
          如果i为偶数那么在h2中寻找-sum[i]-k,将-sum[i]插入哈希表中。
          由于哈希表的插入和查寻复杂度接近O(1),因此我们的算法复杂度总体为O(n)
*/

#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <iostream>
using namespace std;
#define LL long long
const int MAXN=1000010;
const int HASH=1000007;

struct HASHMAP
{
    int head[HASH],next[MAXN],ip;
    LL state[MAXN];
    void init()
    {
        memset(head,-1,sizeof(head));
        ip=0;
    }
    bool check(LL val)
    {
        int h=(val%HASH+HASH)%HASH;
        for(int i=head[h]; i!=-1; i=next[i])
            if(state[i]==val)return true;
        return false;
    }
    int insert(LL val)
    {
        int h=(val%HASH+HASH)%HASH;
        for(int i=head[h]; i!=-1; i=next[i])
        {
            if(val==state[i])
                return 1;
        }
        state[ip]=val,next[ip]=head[h],head[h]=ip++;
        return 0;
    }
} h1,h2;

LL a[MAXN];
int n,k;
int main()
{
    int T,tt=0;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d%d",&n,&k);
        for(int i=0; i<n; i++)
            scanf("%I64d",&a[i]);
        bool flag=false;
        LL sum=0;
        h1.init(),h2.init();
        h1.insert(0),h2.insert(0);
        for(int i=n-1; i>=0; i--)
        {
            if(flag==true)break;
            if(i&1)
                sum-=a[i];
            else
                sum+=a[i];
            if(i%2==0)
            {
                if(h1.check(sum-k))
                    flag=true;
            }
            else
            {
                if(h2.check(-sum-k))
                    flag=true;
            }
            h1.insert(sum);
            h2.insert(-sum);
        }
        printf("Case #%d: ",++tt);
        if(flag)printf("Yes.\n");
        else printf("No.\n");
    }
    return 0;
}


hdu5183 hush

原文:http://blog.csdn.net/lvshubao1314/article/details/44207259

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!