Description
The SUM problem can be formulated as follows: given four lists A, B, C, D of integer values, compute how many quadruplet (a, b, c, d ) AxBxCxD are such that a + b + c + d = 0 . In the following, we assume that all lists have the same size n .
The input begins with a single positive integer on a line by itself indicating the number of the cases following, each of them as described below. This line is followed by a blank line, and there is also a blank line between two consecutive inputs.
The first line of the input file contains the size of the lists n (this value can be as large as 4000). We then have n lines containing four integer values (with absolute value as large as 228 ) that belong respectively to A, B, C and D .
For each test case, the output must follow the description below. The outputs of two consecutive cases will be separated by a blank line.
For each input file, your program has to write the number quadruplets whose sum is zero.
1
6
-45 22 42 -16
-41 -27 56 30
-36 53 -37 77
-36 30 -75 -46
26 -38 -10 62
-32 -54 -6 45
5
Sample Explanation: Indeed, the sum of the five following quadruplets is zero: (-45, -27, 42, 30), (26, 30, -10, -46), (-32, 22, 56, -46),(-32, 30, -75, 77), (-32, -54, 56, 30).
1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 #include <cmath> 5 #include <algorithm> 6 #include <string> 7 #include <vector> 8 #include <stack> 9 #include <queue> 10 #include <set> 11 #include <map> 12 #include <list> 13 #include <iomanip> 14 #include <cstdlib> 15 #include <sstream> 16 using namespace std; 17 typedef long long LL; 18 const int INF=0x5fffffff; 19 const double EXP=1e-8; 20 const int MS=4005; 21 int A[MS],B[MS],C[MS],D[MS],n,sum[MS*MS]; 22 23 int main() 24 { 25 int T; 26 scanf("%d",&T); 27 while(T--) 28 { 29 scanf("%d",&n); 30 for(int i=0;i<n;i++) 31 scanf("%d%d%d%d",&A[i],&B[i],&C[i],&D[i]); 32 int cnt=0; 33 for(int i=0;i<n;i++) 34 for(int j=0;j<n;j++) 35 sum[cnt++]=A[i]+B[j]; 36 sort(sum,sum+cnt); 37 LL ans=0; 38 for(int i=0;i<n;i++) 39 for(int j=0;j<n;j++) 40 { 41 ans+=upper_bound(sum,sum+cnt,-C[i]-D[j])-lower_bound(sum,sum+cnt,-C[i]-D[j]); 42 } 43 printf("%lld\n",ans); 44 if(T) 45 printf("\n"); 46 } 47 return 0; 48 }
K - 4 Values whose Sum is 0(中途相遇法)
原文:http://www.cnblogs.com/767355675hutaishi/p/4335778.html