题目链接:http://acm.timus.ru/problem.aspx?space=1&num=1987
| input | output |
|---|---|
3 2 10 2 3 5 7 11 1 2 3 4 5 6 7 8 9 10 11 |
-1 2 2 1 3 3 3 1 1 1 -1 |
题意:
给定n条线段,每两条线段要么满足没有公共部分,要么包含。给出m个询问,求当前点被覆盖的最小长度的线段编号。
代码一:(先记录左边比询问点小的线段,然后再在这些点中删掉右边还比询问点小的);
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn = 100017;
int tt[maxn];
int n, m;
struct node
{
int l, r;
int num;
} x[maxn];
bool cmp(node a, node b)
{
return a.l < b.l;
}
int cnt = 0, k = 1;
int findd(int q)
{
while(q >= x[k].l)
{
tt[++cnt] = k;
k++;
if(k > n)
break;
}
while(q > x[tt[cnt]].r)
{
cnt--;
if(cnt < 1)
break;
}
return x[tt[cnt]].num;
}
int main()
{
int ans[maxn];
while(~scanf("%d",&n))
{
memset(ans, 0, sizeof(ans));
int ll, rr;
int minn = maxn, maxx = -1;
for(int i = 1; i <= n; i++)
{
scanf("%d%d",&ll,&rr);
if(ll < minn)
{
minn = ll;
}
if(rr > maxx)
{
maxx = rr;
}
x[i].l = ll, x[i].r = rr;
x[i].num = i;
}
int t, q[maxn];
memset(tt, 0, sizeof(tt));
scanf("%d",&m);
for(int i = 1; i <= m; i++)
{
scanf("%d",&t);
q[i] = t;
}
for(int i = 1; i <= m; i++)
{
if(q[i] < minn || q[i] > maxx)
{
ans[i] = -1;
continue;
}
ans[i] = findd(q[i]);
}
for(int i = 1; i <= m; i++)
{
printf("%d\n",ans[i]);
}
}
return 0;
}由于线段不存在部分相交的情况,因此,直接按照输入顺序覆盖区间就可以了,因为后覆盖的线段更短
来自:http://www.cnblogs.com/zhsl/p/3395876.html
//STATUS:C++_AC_187MS_6805KB
#include <functional>
#include <algorithm>
#include <iostream>
//#include <ext/rope>
#include <fstream>
#include <sstream>
#include <iomanip>
#include <numeric>
#include <cstring>
#include <cassert>
#include <cstdio>
#include <string>
#include <vector>
#include <bitset>
#include <queue>
#include <stack>
#include <cmath>
#include <ctime>
#include <list>
#include <set>
#include <map>
using namespace std;
//#pragma comment(linker,"/STACK:102400000,102400000")
//using namespace __gnu_cxx;
//define
#define pii pair<int,int>
#define mem(a,b) memset(a,b,sizeof(a))
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define PI acos(-1.0)
//typedef
typedef __int64 LL;
typedef unsigned __int64 ULL;
//const
const int N=100010;
const int INF=0x3f3f3f3f;
const int MOD=95041567,STA=8000010;
const LL LNF=1LL<<60;
const double EPS=1e-8;
const double OO=1e15;
const int dx[4]={-1,0,1,0};
const int dy[4]={0,1,0,-1};
const int day[13]={0,31,28,31,30,31,30,31,31,30,31,30,31};
//Daily Use ...
inline int sign(double x){return (x>EPS)-(x<-EPS);}
template<class T> T gcd(T a,T b){return b?gcd(b,a%b):a;}
template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;}
template<class T> inline T lcm(T a,T b,T d){return a/d*b;}
template<class T> inline T Min(T a,T b){return a<b?a:b;}
template<class T> inline T Max(T a,T b){return a>b?a:b;}
template<class T> inline T Min(T a,T b,T c){return min(min(a, b),c);}
template<class T> inline T Max(T a,T b,T c){return max(max(a, b),c);}
template<class T> inline T Min(T a,T b,T c,T d){return min(min(a, b),min(c,d));}
template<class T> inline T Max(T a,T b,T c,T d){return max(max(a, b),max(c,d));}
//End
int c[(N*3)<<2],t[N][2],q[N],id[N*3];
int n;
void pushdown(int rt)
{
if(c[rt]!=-1)
c[rt<<1]=c[rt<<1|1]=c[rt];
}
void pushup(int rt)
{
if(c[rt<<1]==c[rt<<1|1])
c[rt]=c[rt<<1];
else c[rt]=-1;
}
void update(int l,int r,int rt,int L,int R,int val)
{
if(L<=l && r<=R){
c[rt]=val;
return;
}
pushdown(rt);
int mid=(l+r)>>1;
if(L<=mid)update(lson,L,R,val);
if(R>mid)update(rson,L,R,val);
pushup(rt);
}
int query(int l,int r,int rt,int w)
{
if(l==r){
return c[rt];
}
pushdown(rt);
int mid=(l+r)>>1,ret;
if(w<=mid)ret=query(lson,w);
else ret=query(rson,w);
pushup(rt);
return ret;
}
int main()
{
// freopen("in.txt","r",stdin);
int i,j,k,L,R,m;
while(~scanf("%d",&n))
{
k=0;
for(i=1;i<=n;i++){
scanf("%d%d",&t[i][0],&t[i][1]);
id[k++]=t[i][0];
id[k++]=t[i][1];
}
scanf("%d",&m);
for(i=0;i<m;i++){
scanf("%d",&q[i]);
id[k++]=q[i];
}
sort(id,id+k);
k=unique(id,id+k)-id;
mem(c,-1);
for(i=1;i<=n;i++){
L=lower_bound(id,id+k,t[i][0])-id+1;
R=lower_bound(id,id+k,t[i][1])-id+1;
update(1,k,1,L,R,i);
}
for(i=0;i<m;i++){
printf("%d\n",query(1,k,1,lower_bound(id,id+k,q[i])-id+1));
}
}
return 0;
}
URAL 1987. Nested Segments(数学 & 线段树)
原文:http://blog.csdn.net/u012860063/article/details/44256905