#include <iostream> #include <cstdio> #include <fstream> #include <algorithm> #include <cmath> #include <deque> #include <vector> #include <list> #include <queue> #include <string> #include <cstring> #include <map> #include <stack> #include <set> #define PI acos(-1.0) #define eps 1e-8 #define mem(a,b) memset(a,b,sizeof(a)) #define sca(a) scanf("%d",&a) #define pri(a) printf("%d\n",a) #define f(i,a,n) for(i=a;i<n;i++) #define F(i,a,n) for(i=a;i<=n;i++) #define MM 200005 #define MN 505 #define INF 10000007 using namespace std; typedef long long ll; inline double sqr(const double &x){ return x * x;} inline double sgn(const double &x){ return x < -eps ? -1 : x > eps;} struct Point{ double x, y; Point(const double &x = 0, const double &y = 0):x(x), y(y){} Point operator - (const Point &a)const{ return Point(x - a.x, y - a.y);} Point operator + (const Point &a)const{ return Point(x + a.x, y + a.y);} Point operator * (const double &a)const{ return Point(x * a, y * a);} Point operator / (const double &a)const{ return Point(x / a, y / a);} bool operator < (const Point &a)const{ return sgn(x - a.x) < 0 || (sgn(x - a.x) == 0 && sgn(y - a.y) < 0);} friend double det(const Point &a, const Point &b){ return a.x * b.y - a.y * b.x;} friend double dot(const Point &a, const Point &b){ return a.x * b.x + a.y * b.y;} friend double dist(const Point &a, const Point &b){ return sqrt(sqr(a.x - b.x) + sqr(a.y - b.y));} double len(){ return sqrt(dot(*this, *this));} Point rotateA(const double &angle)const{ return rotateS(cos(angle), sin(angle));} Point rotateS(const double &cosa, const double &sina)const{ return Point(x * cosa - y * sina, x * sina + y * cosa);} void in(){ scanf("%lf %lf", &x, &y); } void out()const{ printf("%.2f %.2f\n",x, y);} }; struct Line{ Point s, t; Line(const Point &s = Point(), const Point &t = Point()):s(s), t(t){} Point dire()const{ return t - s;} double len()const{ return dire().len();} bool isPointInLine(const Point &p)const{ return sgn(det(p - s, t - s)) == 0 && sgn(dot(p - s, p - t)) <= 0;} bool isPointInLineEx(const Point &p)const{ return sgn(det(p - s, t - s)) == 0 && sgn(dot(p - s, p - t)) < 0;}//不含端点 Point pointProjLine(const Point &p){ return s + dire() * ((dot(p - s, dire()) / dire().len()) /(dire().len()));} double pointDistLine(const Point &p){ return fabs(det(p - s, dire()) / dire().len());} friend bool sameSide(const Line &line , const Point &a, const Point &b){ return sgn(det(b - line.s, line.dire())) * sgn(det(a - line.s, line.dire())) > 0; } friend bool isLineInsectLine(const Line &l1, const Line &l2){ if(sgn(det(l2.s - l1.s, l1.dire())) == 0 && sgn(det(l2.t - l1.s, l1.dire())) == 0 && sgn(det(l1.s - l2.s, l2.dire())) == 0 && sgn(det(l1.t - l2.s, l2.dire())) == 0){ return l1.isPointInLine(l2.s) || l1.isPointInLine(l2.t) || l2.isPointInLine(l1.s) ||l2.isPointInLine(l1.t); } return !sameSide(l1, l2.s, l2.t) && !sameSide(l2, l1.s, l1.t); } friend Point lineInsectLine(const Line &l1, const Line &l2){ double s1 = det(l1.s - l2.s, l2.dire()), s2 = det(l1.t - l2.s, l2.dire()); return (l1.t * s1 - l1.s * s2) / (s1 - s2); } void in(){ s.in(); t.in();} void out()const{ s.out(); t.out(); } }; int main() { Point a,b,c,d; cin>>a.x>>a.y>>b.x>>b.y>>c.x>>c.y>>d.x>>d.y; Line a1,b1; a1.s=a,a1.t=b,b1.s=c,b1.t=d; if(isLineInsectLine(a1,b1)) puts("Y"); else puts("N"); return 0; }
COJ 1645计算几何:判断线段是否相交,布布扣,bubuko.com
原文:http://blog.csdn.net/u011466175/article/details/20862415