首页 > 其他 > 详细

UVA 10655 Contemplation! Algebra(矩阵快速幂)

时间:2015-03-19 23:59:12      阅读:560      评论:0      收藏:0      [点我收藏+]

Given the value of a+b and ab you will have to find the value of an+bn

 

Input

The input file contains several lines of inputs. Each line except the last line contains 3 non-negative integers pq and n. Here p denotes the value of a+b andq denotes the value of ab. Input is terminated by a line containing only two zeroes. This line should not be processed. Each number in the input file fits in a signed 32-bit integer. There will be no such input so that you have to find the value of 00.

 

Output

For each line of input except the last one produce one line of output. This line contains the value of an+bn.  You can always assume that an+bfits in a signed 64-bit integer.

 

Sample Input                               Output for Sample Input

10 16 2 
7 12 3 
0 0

68

91 

  


Problem setter: Shahriar Manzoor, Member of Elite Problemsetters‘ Panel

Special Thanks: Mohammad Sajjad Hossain

 题意很明显就是求a^n+b^n;

我们发现f0=2,f1=a+b,f2=a^2+b^2=(a+b)*f1-a*b*f2....

依次递推,令p=a+b,q=a*b;

所以fi=fi-1*p-fi-2*q;

构造出矩阵后就可以求解了。

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<string>
#include<iostream>
#include<queue>
#include<cmath>
#include<map>
#include<stack>
#include<bitset>
using namespace std;
#define REPF( i , a , b ) for ( int i = a ; i <= b ; ++ i )
#define REP( i , n ) for ( int i = 0 ; i < n ; ++ i )
#define CLEAR( a , x ) memset ( a , x , sizeof a )
typedef long long LL;
typedef pair<int,int>pil;
const int INF = 0x3f3f3f3f;
struct Matrix{
    LL mat[2][2];
    void Clear()
    {
        CLEAR(mat,0);
    }
};
Matrix mult(Matrix m1,Matrix m2)
{
    Matrix ans;
    for(int i=0;i<2;i++)
        for(int j=0;j<2;j++)
        {
            ans.mat[i][j]=0;
            for(int k=0;k<2;k++)
                ans.mat[i][j]=ans.mat[i][j]+m1.mat[i][k]*m2.mat[k][j];
        }
    return ans;
}
Matrix Pow(Matrix m1,LL b)
{
    Matrix ans;ans.Clear();
    for(int i=0;i<2;i++)
        ans.mat[i][i]=1;
    while(b)
    {
        if(b&1)
           ans=mult(ans,m1);
        b>>=1;
        m1=mult(m1,m1);
    }
    return ans;
}
LL p,q,n;
int main()
{
    while(scanf("%lld%lld%lld",&p,&q,&n)==3)
    {
        Matrix A;
        if(n==0)
        {
            puts("2");
            continue;
        }
        if(n==1)
        {
            printf("%lld\n",p);
            continue;
        }
        A.mat[0][0]=p;A.mat[0][1]=-q;
        A.mat[1][0]=1;A.mat[1][1]=0;
        A=Pow(A,n-1);
        LL ans=A.mat[0][0]*p+A.mat[0][1]*2;
        printf("%lld\n",ans);
    }
    return 0;
}

HDU 4565 

So Easy!

Problem Description
  A sequence Sn is defined as:
技术分享

Where a, b, n, m are positive integers.┌x┐is the ceil of x. For example, ┌3.14┐=4. You are to calculate Sn.
  You, a top coder, say: So easy! 
技术分享
 

Input
  There are several test cases, each test case in one line contains four positive integers: a, b, n, m. Where 0< a, m < 215, (a-1)2< b < a2, 0 < b, n < 231.The input will finish with the end of file.
 

Output
  For each the case, output an integer Sn.
 

Sample Input
2 3 1 2013 2 3 2 2013 2 2 1 2013
 

Sample Output
4 14 4
 
题目要求这个式子答案,我们发现(a-1)^2<b<a^2这就意味着a-1<sqrt(b)<a;
所以又(a+sqrt(b))^n+(a-sqrt(b))^n为整数,所以式子答案即为(a+sqrt(b))^n+(a-sqrt(b))^n
简化下,就是上面的a‘=a+sqrt(b),b‘=a-sqrt(b);所以p=2*a,q=a*a-b;
问题转化为上题做法。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<string>
#include<iostream>
#include<queue>
#include<cmath>
#include<map>
#include<stack>
#include<bitset>
using namespace std;
#define REPF( i , a , b ) for ( int i = a ; i <= b ; ++ i )
#define REP( i , n ) for ( int i = 0 ; i < n ; ++ i )
#define CLEAR( a , x ) memset ( a , x , sizeof a )
typedef long long LL;
typedef pair<int,int>pil;
const int INF = 0x3f3f3f3f;
struct Matrix{
    LL mat[2][2];
    void Clear()
    {
        CLEAR(mat,0);
    }
};
LL a,b,n,m;
Matrix mult(Matrix m1,Matrix m2)
{
    Matrix ans;
    for(int i=0;i<2;i++)
        for(int j=0;j<2;j++)
        {
            ans.mat[i][j]=0;
            for(int k=0;k<2;k++)
                ans.mat[i][j]=(ans.mat[i][j]+m1.mat[i][k]*m2.mat[k][j])%m;
        }
    return ans;
}
Matrix Pow(Matrix m1,LL b)
{
    Matrix ans;ans.Clear();
    for(int i=0;i<2;i++)
        ans.mat[i][i]=1;
    while(b)
    {
        if(b&1)
            ans=mult(ans,m1);
        b>>=1;
        m1=mult(m1,m1);
    }
    return ans;

}
int main()
{
    while(scanf("%I64d%I64d%I64d%I64d",&a,&b,&n,&m)!=EOF)
    {
        LL p=2*a,q=a*a-b;//x^n+y^n
        Matrix A;
        if(n==1)
        {
            printf("%I64d\n",p);
            continue;
        }
        A.mat[0][0]=p;A.mat[0][1]=-q;
        A.mat[1][0]=1;A.mat[1][1]=0;
        A=Pow(A,n-1);
        LL ans=A.mat[0][0]*p%m;
        ans=((ans+A.mat[0][1]*2)%m+m)%m;
        printf("%I64d\n",ans);
    }
    return 0;
}



UVA 10655 Contemplation! Algebra(矩阵快速幂)

原文:http://blog.csdn.net/u013582254/article/details/44466971

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!