首页 > 其他 > 详细

求复变函数的 Taylor 展式与 Laurent 展式

时间:2014-03-11 06:53:52      阅读:590      评论:0      收藏:0      [点我收藏+]

f(z)=1bubuko.com,布布扣(z?1)(z?2)bubuko.com,布布扣bubuko.com,布布扣.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣

(1) 求 f(z)bubuko.com,布布扣 |z|<1bubuko.com,布布扣 内的 Taylor 展式.

(2) 求 f(z)bubuko.com,布布扣 在圆环 1<|z|<2bubuko.com,布布扣 内的 Laurent 展式.

(3) 求 f(z)bubuko.com,布布扣 在圆环 |z|>2bubuko.com,布布扣 内的 Laurent 展式. 

解答:

(1)

f(z)bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=1bubuko.com,布布扣z?2bubuko.com,布布扣bubuko.com,布布扣?1bubuko.com,布布扣z?1bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=?1bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣1bubuko.com,布布扣1?zbubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣+1bubuko.com,布布扣1?zbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=?1bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣n=0bubuko.com,布布扣bubuko.com,布布扣(zbubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣)bubuko.com,布布扣nbubuko.com,布布扣+bubuko.com,布布扣n=0bubuko.com,布布扣bubuko.com,布布扣zbubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣=bubuko.com,布布扣n=0bubuko.com,布布扣bubuko.com,布布扣(1?1bubuko.com,布布扣2bubuko.com,布布扣n+1bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣)zbubuko.com,布布扣nbubuko.com,布布扣,|z|<1.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣

(2)

f(z)bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=1bubuko.com,布布扣z?2bubuko.com,布布扣bubuko.com,布布扣?1bubuko.com,布布扣z?1bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=?1bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣1bubuko.com,布布扣1?zbubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣?1bubuko.com,布布扣zbubuko.com,布布扣bubuko.com,布布扣1bubuko.com,布布扣1?1bubuko.com,布布扣zbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=?1bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣n=0bubuko.com,布布扣bubuko.com,布布扣(zbubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣)bubuko.com,布布扣nbubuko.com,布布扣?1bubuko.com,布布扣zbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣n=0bubuko.com,布布扣bubuko.com,布布扣1bubuko.com,布布扣zbubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=?bubuko.com,布布扣n=1bubuko.com,布布扣bubuko.com,布布扣1bubuko.com,布布扣zbubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣?bubuko.com,布布扣n=0bubuko.com,布布扣bubuko.com,布布扣zbubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣2bubuko.com,布布扣n+1bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣,1<|z|<2.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣

(3)

f(z)bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=1bubuko.com,布布扣z?2bubuko.com,布布扣bubuko.com,布布扣?1bubuko.com,布布扣z?1bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=1bubuko.com,布布扣zbubuko.com,布布扣bubuko.com,布布扣1bubuko.com,布布扣1?2bubuko.com,布布扣zbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣?1bubuko.com,布布扣zbubuko.com,布布扣bubuko.com,布布扣1bubuko.com,布布扣1?1bubuko.com,布布扣zbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=1bubuko.com,布布扣zbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣n=0bubuko.com,布布扣bubuko.com,布布扣(2bubuko.com,布布扣zbubuko.com,布布扣bubuko.com,布布扣)bubuko.com,布布扣nbubuko.com,布布扣?1bubuko.com,布布扣zbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣n=0bubuko.com,布布扣bubuko.com,布布扣(1bubuko.com,布布扣zbubuko.com,布布扣bubuko.com,布布扣)bubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣=bubuko.com,布布扣n=1bubuko.com,布布扣bubuko.com,布布扣2bubuko.com,布布扣n?1bubuko.com,布布扣?1bubuko.com,布布扣zbubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣,|z|>2.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
 

求复变函数的 Taylor 展式与 Laurent 展式,布布扣,bubuko.com

求复变函数的 Taylor 展式与 Laurent 展式

原文:http://www.cnblogs.com/zhangzujin/p/3591205.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!