首页 > 其他 > 详细

OpenCV Haar AdaBoost源码改进据说是比EMCV快6倍

时间:2015-03-21 22:47:26      阅读:502      评论:0      收藏:0      [点我收藏+]
<pre name="code" class="cpp">#include "Haar.h"
#include "loadCascade.h"
#include "Util.h"
#include "stdio.h"
#include "string.h"
#include <math.h>
#include <stdint.h>
#include <c6x.h>

/*******************Global************************************/
HaarClassifierCascade *cascade ;
//HidHaarClassifierCascade hid_cascade;
//32bits cell Mat
int        MatPool32[MaxMatNum][MAXROWS][MAXCOLS];
//8bits cell 
unsigned char  MatPool8[MaxMatNum][MAXROWS][MAXCOLS];

//8bits*3 cell 
unsigned char  ImgRGBPool8[MaxMatNum][RGBCHANNEL][MAXROWS][MAXCOLS];

//64bits  cell 
_int64     MatPool64[MaxMatNum][MAXROWS][MAXCOLS];

//候选区域坐标节点并查集
PTreeNode PTreeNodes[MAXPTREENODES];

char HidCascade[MAXHIDCASCADE];

//分类器检测结果区域序列
Sequence result_seq;





//==================================================================
//函数名:  IsEqual
//作者:    qiurenbo
//日期:    2014-10-1
//功能:    判断两个矩形是否邻接
//输入参数:_r1  _r2 候选区域矩形      
//返回值:  返回相似性(是否是邻接的矩形)
//修改记录:
//==================================================================
int IsEqual( const void* _r1, const void* _r2)
{
    const Rect* r1 = (const Rect*)_r1;
    const Rect* r2 = (const Rect*)_r2;
    int distance5x = r1->width ;//int distance = cvRound(r1->width*0.2);
    
    return r2->x*5 <= r1->x*5 + distance5x &&
        r2->x*5 >= r1->x*5 - distance5x &&
        r2->y*5 <= r1->y*5 + distance5x &&
        r2->y*5 >= r1->y*5 - distance5x &&
        r2->width*5 <= r1->width * 6 &&
        r2->width * 6 >= r1->width*5;
}

//==================================================================
//函数名:  ReadFaceCascade
//作者:    qiurenbo
//日期:    2014-10-1
//功能:    根据候选区域的相似性(IsEqual函数)建立并查集
//输入参数:seq  候选目标区域序列      
//返回值:  返回分类后的类别数 
//修改记录:
//==================================================================
int SeqPartition( const Sequence* seq )
{
    Sequence* result = 0;
    //CvMemStorage* temp_storage = 0;
    int class_idx = 0;
    

    memset(PTreeNodes, 0, MAXPTREENODES*sizeof(PTreeNode));
    
    int i, j;
   


    //建立以seq中元素为根节点的森林
    for( i = 0; i < seq->total; i++ )
        PTreeNodes[i].element = (char*)&seq->rectQueue[i];

    //遍历所有根节点
    for( i = 0; i < seq->total; i++ )
    {
        PTreeNode* node = &PTreeNodes[i];
        PTreeNode* root = node;
        //确保node中元素指针不为空
        if( !node->element )
            continue;
        
        //找到元素在树中的根结点
        while( root->parent )
            root = root->parent;
        
        for( j = 0; j < seq->total; j++ )
        {
            PTreeNode* node2 = &PTreeNodes[j];
            
            //确保1.node中元素指针不为空
            //    2.且不是同一个node结点
            //    3.且是相似区域
            // 若是相似区域,则合并元素
            if( node2->element && node2 != node &&
                IsEqual( node->element, node2->element))
            {
                PTreeNode* root2 = node2;
                
               //找到元素在树中的根结点
                while( root2->parent )
                    root2 = root2->parent;
                
                //合并的前提是不在一颗树中
                if( root2 != root )
                {
                    //秩小的树归入秩大的树中
                    if( root->rank > root2->rank )
                        root2->parent = root;
                    //秩相等的时候才改变树的秩
                    else
                    {
                        root->parent = root2;
                        root2->rank += root->rank == root2->rank;
                        root = root2;
                    }
                    //assert( root->parent == 0 );
                    
                    // 路径压缩,子节点node2直接指向根节点
                    while( node2->parent )
                    {
                        PTreeNode* temp = node2;
                        node2 = node2->parent;
                        temp->parent = root;
                    }
                    
                    // 路径压缩,子节点node直接指向根节点
                    node2 = node;
                    while( node2->parent )
                    {
                        PTreeNode* temp = node2;
                        node2 = node2->parent;
                        temp->parent = root;
                    }
                }
            }
        
        }
    }


    for( i = 0; i < seq->total; i++ )
    {
        PTreeNode* node = &PTreeNodes[i];
        int idx = -1;
        
        if( node->element )
        {
            while( node->parent )
                node = node->parent;
            
            //计算有几棵并查树,巧妙地利用取反避免重复计算
            if( node->rank >= 0 )
                node->rank = ~class_idx++;
            idx = ~node->rank;
        }
        
       
    }

    return class_idx;
}


//==================================================================
//函数名:  ReadFaceCascade
//作者:    qiurenbo
//日期:    2014-09-30
//功能:    读取Cascade文件
//输入参数:void      
//返回值:  void  
//修改记录:
//==================================================================
void ReadFaceCascade()
{
    int i;
    //load cascade
    cascade = (HaarClassifierCascade*)HaarClassifierCascade_face;

    //load stages
    int stage_size = StageClassifier_face[0];
    HaarStageClassifier *stages ;
    stages = (HaarStageClassifier *)(StageClassifier_face+1);
    
    //load classifier
    int classifier_size = Classifier_face[0];
    HaarClassifier *cls ;
    cls = (HaarClassifier*) (Classifier_face+1);
    
    int class_info_size = class_info[0];
    int * cls_info ;
    cls_info = (int*)(class_info+1);

    
    
    //link cascade with stages
    cascade->stage_classifier = stages;
    //link stages,classifiers
    int offset=0;
    int offset_t=(sizeof(HaarFeature)/sizeof(int));
    int offset_l=offset_t+1;
    int offset_r=offset_t+2;
    int offset_a=offset_t+3;
    int offset_total=0;
    for(i=0;i<stage_size;++i)
    {
        (stages+i)->classifier = (cls+offset);
        offset +=(stages+i)->count;
    }
    
    offset_total = 5+ (sizeof(HaarFeature)/sizeof(int));
    //link classifiers and haar_featrue;
    for(i=0;i<classifier_size;++i)
    {
        HaarClassifier *cs= cls+i;
    
        cs->haar_feature = (HaarFeature*)(cls_info+i*offset_total);
        cs->threshold = (int*)(cls_info+i*offset_total+offset_t);
        cs->left =(int*)(cls_info+i*offset_total+offset_l);
        cs->right=(int*)(cls_info+i*offset_total+offset_r);
        cs->alpha=(int*)(cls_info+i*offset_total+offset_a);
    
    }
}
//==================================================================
//函数名:  IntegralImage
//作者:    qiurenbo
//日期:    2014-09-26
//功能:    从矩阵池中获取rows * cols的矩阵 
//输入参数:mat        矩阵结构体地址
//            rows    待分配的行数
//            cols    待分配的列数
//            type    待分配的矩阵类型 
//            matIndex 从矩阵池中分配的矩阵序列(手动指定..)      
//返回值:  void  
//修改记录:
//==================================================================

void GetMat(void* mat, int rows, int cols, int type, int matIndex)
{
    switch(type)
    {
        case BITS8: 
                ((Mat8*)mat)->rows = rows;
                ((Mat8*)mat)->cols = cols;
                ((Mat8*)mat)->mat8Ptr =  (Mat8Ptr)&MatPool8[matIndex];
                break;
            
        case BITS32: 
                ((Mat32*)mat)->rows = rows;
                ((Mat32*)mat)->cols = cols;
                ((Mat32*)mat)->mat32Ptr =  (Mat32Ptr)&MatPool32[matIndex];
                break;

        case BITS64:
                ((Mat64*)mat)->rows = rows;
                ((Mat64*)mat)->cols = cols;
                ((Mat64*)mat)->mat64Ptr =  (Mat64Ptr)&MatPool64[matIndex];
                break;
    }
}


//==================================================================
//函数名:  IntegralImage
//作者:    qiurenbo
//日期:    2014-09-26
//功能:    计算目标检测区域的积分图
//输入参数:src        待检测目标所在矩阵起始
//            srcstep 待检测区域列数
//            sum        积分图矩阵    (W+1)*(H+1)    
//            sumstep 积分图矩阵列数    
//            sqsum    平方和图矩阵 (W+1)*(H+1)    
//            sqsumstep 平方和图矩阵列数
//            size   待检测区域大小 W*H
//          
//          
//返回值:  void  
//修改记录:
//==================================================================
void IntegralImage(ImgPtr src, int srcstep,
                   Mat32Ptr sum, int sumstep,     
                   Mat64Ptr sqsum, int sqsumstep,
                   Size size)
{
    int s = 0;
    _int64 sq = 0;
    //移动指针到积分图的下一行,第一行全为0
    sum += sumstep + 1;     
    sqsum += sqsumstep + 1; 
    
    //y代表相对于输入检测矩阵起始第几行
    for(int y = 0; y < size.height; y++, src += srcstep,       
        sum += sumstep, sqsum += sqsumstep )    
    {   
        //sum和sqsum为(W+1)*(H+1)大小矩阵,故将第一列置为0
        sum[-1] = 0;                                        
        sqsum[-1] = 0;                                      
        
        for(int x = 0 ; x < size.width; x++ )    
        {                                                   
            int it = src[x];                           
            int t = (it);   
            
            //查表计算平方
            _int64    tq =  CV_8TO16U_SQR(it);  
            //s代表行上的累加和
            s += t;  
            //sq代表行上的累加和
            sq += tq;                                       
            t = sum[x - sumstep] + s;                       
            tq = sqsum[x - sqsumstep] + sq;                 
            sum[x] = t;                                     
            sqsum[x] = (_int64)tq;                                  
        }                                                   
    }                        
}

//==================================================================
//函数名:  Integral
//作者:    qiurenbo
//日期:    2014-09-26
//功能:    计算目标检测区域的积分图
//输入参数:image 图像
//            sumImage 积分图指针
//            sumSqImage 平方和图指针                 
//返回值:  void  
//修改记录:
//==================================================================
void Integral(Image* image, Mat32* sumImage, Mat64* sumSqImage)
{

    //取保地址空间已经分配,从数组中
    if (image == NULL || sumImage == NULL || sumSqImage == NULL)
        return;

    Image*src    =        (Image*)image;
    Mat32 *sum     =        (Mat32*)sumImage;
    Mat64 *sqsum =        (Mat64*)sumSqImage;
   
    Size size;
    size.height = src->rows;
    size.width =  src->cols;

    IntegralImage(src->imgPtr, src->cols,
        sum->mat32Ptr, sum->cols,     
        sqsum->mat64Ptr, sqsum->cols,size);
    

}
//==================================================================
//函数名:  AlignPtr
//作者:    qiurenbo
//日期:    2014-10-03
//功能:    按algin字节对齐
//输入参数:ptr 要对齐的指针   
//            align 对齐的字节数           
//返回值:  void*   
//修改记录:
//==================================================================
void* AlignPtr( const void* ptr, int align)
{

    return (void*)( ((unsigned int)ptr + align - 1) & ~(align-1) );
} 
//==================================================================
//函数名:  CreateHidHaarClassifierCascade
//作者:    qiurenbo
//日期:    2014-09-28
//功能:    创建隐式积分图加快计算速度
//输入参数:cascade 级联分类器指针              
//返回值:  static HidHaarClassifierCascade*   返回一个隐式级联分类器指针
//修改记录:
//==================================================================
static HidHaarClassifierCascade*
CreateHidHaarClassifierCascade(HaarClassifierCascade* cascade)
{



    
    cascade->hid_cascade = (struct HidHaarClassifierCascade *)HidCascade;
    //分配栈空间
    HidHaarClassifierCascade* out = (struct HidHaarClassifierCascade *)HidCascade;
    const int icv_stage_threshold_bias = 419; //0.0001*(2^22)=419.4304

    HidHaarClassifier* haar_classifier_ptr;
    HidHaarTreeNode* haar_node_ptr;
    int i, j, l;
   
    int total_classifiers = 2135;
    int total_nodes = 0;
    
  
    int has_tilted_features = 0;
    int max_count = 0;




    /* 初始化HidCascade头 */
    out->count = cascade->count;
    out->stage_classifier = (HidHaarStageClassifier*)(out + 1);
    //out->stage_classifier = (HidHaarStageClassifier*)AlignPtr(out + 1, 4);
    //classifier起始地址
    haar_classifier_ptr = (HidHaarClassifier*)(out->stage_classifier + cascade->count);
    //haar_classifier_ptr = (HidHaarClassifier*)AlignPtr(out->stage_classifier + cascade->count, 4);
    //node起始地址
    //haar_node_ptr = (HidHaarTreeNode*)AlignPtr(haar_classifier_ptr + total_classifiers, 4);
    haar_node_ptr = (HidHaarTreeNode*)(haar_classifier_ptr + total_classifiers);
    out->is_stump_based = 1;
    out->is_tree = 0;

    // 用cascade初始化HidCascade
    for( i = 0; i < cascade->count; i++ )
    {

        //用cascades Stage初始化HidCascade的Stage
        HaarStageClassifier* stage_classifier = cascade->stage_classifier + i;
        HidHaarStageClassifier* hid_stage_classifier = out->stage_classifier + i;

        hid_stage_classifier->count = stage_classifier->count;
        hid_stage_classifier->threshold = stage_classifier->threshold - icv_stage_threshold_bias;
        //hid_stage_classifier->classifier = (struct HidHaarClassifier *)&HidClassifiers[i];
         hid_stage_classifier->classifier = haar_classifier_ptr;
        //初始化为二特征,下面会根据真实的特征数至1或0(三特征)
        hid_stage_classifier->two_rects = 1;
        haar_classifier_ptr += stage_classifier->count;


        //Stage构成一颗退化的二叉树(单分支),每个结点最多只有一个孩子
        hid_stage_classifier->parent = (stage_classifier->parent == -1)
            ? NULL : out->stage_classifier + stage_classifier->parent;
        hid_stage_classifier->next = (stage_classifier->next == -1)
            ? NULL :  out->stage_classifier + stage_classifier->next;
        hid_stage_classifier->child = (stage_classifier->child == -1)
            ? NULL : out->stage_classifier + stage_classifier->child ;
        
        //判断该stage是否为树状结构(多分枝)
        out->is_tree |= hid_stage_classifier->next != NULL;


        //赋值classifer属性
        for( j = 0; j < stage_classifier->count; j++ )
        {
            HaarClassifier* classifier = stage_classifier->classifier + j;
            HidHaarClassifier* hid_classifier = hid_stage_classifier->classifier + j;
            int node_count = classifier->count;
            
            int* alpha_ptr = (int*)(haar_node_ptr + node_count);

            hid_classifier->count = node_count;
            hid_classifier->node = haar_node_ptr;
            hid_classifier->alpha = alpha_ptr;
           
            //赋值node属性
            for( l = 0; l < node_count; l++ )
            {
                HidHaarTreeNode* node =  hid_classifier->node + l;
                HaarFeature* feature = classifier->haar_feature + l;
                memset( node, -1, sizeof(*node) );
                node->threshold = classifier->threshold[l];
                node->left = classifier->left[l];
                node->right = classifier->right[l];
                
                //对特征数目进行判断,若是三特征,则至two_rects为0
                if( (feature->rect[2].weight) == 0 ||
                    feature->rect[2].r.width == 0 ||
                    feature->rect[2].r.height == 0 )
                    memset( &(node->feature.rect[2]), 0, sizeof(node->feature.rect[2]) );
                else
                    hid_stage_classifier->two_rects = 0;
            }

            //赋值alpha
            memcpy( hid_classifier->alpha, classifier->alpha, (node_count+1)*sizeof(hid_classifier->alpha[0]));
            haar_node_ptr = (HidHaarTreeNode*)(alpha_ptr+node_count + 1);
                

            //判断cascade中的分类器是否是树桩分类器,只有根结点的决策树
            out->is_stump_based &= node_count == 1;
        }
    }


    //cascade->hid_cascade = out;
    //assert( (char*)haar_node_ptr - (char*)out <= datasize );

   



    return out;
}

//==================================================================
//函数名:  SetImagesForHaarClassifierCascade
//作者:    qiurenbo
//日期:    2014-09-29
//功能:    根据尺度调整Haar特征的大小和权重
//输入参数:cascade 级联分类器指针 
//            sum     积分图
//            sqsum   平方和积分图
//            scale32x 尺度             
//返回值:  无
//修改记录:
//==================================================================
void SetImagesForHaarClassifierCascade(HaarClassifierCascade* _cascade, Mat32* sum, Mat64* sqsum, int scale32x)
{



  
    HidHaarClassifierCascade* hidCascade;
    int coi0 = 0, coi1 = 0;
    int i;
    Rect equ_rect;
    int weight_scale;
    HaarFeature* feature;
    HidHaarFeature* hidfeature;
    int sum0 = 0, area0 = 0;
    Rect r[3];
    Rect tr;
    int correction_ratio;


    //根据尺度获取窗口大小
    _cascade->scale32x = scale32x;
    _cascade->real_window_size.width = (_cascade->orig_window_size.width * scale32x + 16)>>5 ;
    _cascade->real_window_size.height = (_cascade->orig_window_size.height * scale32x +16) >> 5;


    //设置隐式级联分类器的积分图
    hidCascade = _cascade->hid_cascade;
    hidCascade->sum = sum;
    hidCascade->sqsum = sqsum;

    //根据尺度设置积分图起始矩阵的位置
    equ_rect.x = equ_rect.y = (scale32x+16)>>5;    
    equ_rect.width = ((_cascade->orig_window_size.width-2)*scale32x + 16 ) >> 5;   //+0.5是为了四舍五入
    equ_rect.height = ((_cascade->orig_window_size.height-2)*scale32x + 16 ) >> 5;
    weight_scale = equ_rect.width*equ_rect.height;
    hidCascade->window_area = weight_scale; //矩形面积
    
    //获取积分图上起始矩阵四个像素的坐标
    hidCascade->p0 = sum->mat32Ptr + (equ_rect.y) * sum->cols+ equ_rect.x;
    hidCascade->p1 = sum->mat32Ptr + (equ_rect.y) * sum->cols + equ_rect.x + equ_rect.width;
    hidCascade->p2 = sum->mat32Ptr + (equ_rect.y + equ_rect.height) * sum->cols + equ_rect.x;
    hidCascade->p3 = sum->mat32Ptr + (equ_rect.y + equ_rect.height) * sum->cols + equ_rect.x + equ_rect.width;

    //获取平方和积分图上起始矩阵四个像素的坐标
    hidCascade->pq0 = sqsum->mat64Ptr + (equ_rect.y) * sqsum->cols+ equ_rect.x;
    hidCascade->pq1 = sqsum->mat64Ptr + (equ_rect.y) * sqsum->cols+ equ_rect.x + equ_rect.width;
    hidCascade->pq2 = sqsum->mat64Ptr + (equ_rect.y + equ_rect.height) * sqsum->cols+ equ_rect.x;
    hidCascade->pq3 = sqsum->mat64Ptr + (equ_rect.y + equ_rect.height) * sqsum->cols+ equ_rect.x + equ_rect.width;

    //遍历每个Classifer所使用的特征,对它们进行尺度放大,并将改变的值赋给HidCascade,隐式级联分类器
    for( i = 0; i < hidCascade->count; i++ )
    {
        int j, k, l;
        for( j = 0; j < hidCascade->stage_classifier[i].count; j++ )
        {
            for( l = 0; l < hidCascade->stage_classifier[i].classifier[j].count; l++ )
            {
                feature = &_cascade->stage_classifier[i].classifier[j].haar_feature[l];

                   hidfeature = &hidCascade->stage_classifier[i].classifier[j].node[l].feature;
                sum0 = 0;
                area0 = 0;
                
                
         
                for( k = 0; k < CV_HAAR_FEATURE_MAX; k++ )
                {
                    if( !hidfeature->rect[k].p0 )
                        break;
                    
                    r[k] = feature->rect[k].r;
                
                    
                    
                    //左上角坐标和矩阵长宽都按尺度放大
                    tr.x = (r[k].x * scale32x + 16) >> 5;
                    tr.width = (r[k].width * scale32x + 16) >> 5;
                    tr.y = ( r[k].y * scale32x + 16 ) >> 5;
                    tr.height = ( r[k].height * scale32x +16 ) >> 5;
                    
                    
                    correction_ratio = weight_scale;
                    
                    //设置矩阵四个顶点在积分图中的位置(为了计算特征方便)
                    hidfeature->rect[k].p0 = sum->mat32Ptr + tr.y * sum->cols +  tr.x;
                    hidfeature->rect[k].p1 = sum->mat32Ptr + tr.y * sum->cols +  tr.x + tr.width; 
                    hidfeature->rect[k].p2 = sum->mat32Ptr + (tr.y + tr.height) *sum->cols +  tr.x; 
                    hidfeature->rect[k].p3 = sum->mat32Ptr + (tr.y + tr.height) *sum->cols +  tr.x + tr.width;
                    
                    //rect[1] = weight/area, 左移22位是为了避免浮点计算,将权值/检测窗口面积(不断扩大),降低权值
                    hidfeature->rect[k].weight = ((feature->rect[k].weight)<< NODE_THRESHOLD_SHIFT)/(correction_ratio);
                    
                    if( k == 0 )
                        area0 = tr.width * tr.height;
                   else
                        sum0 += hidfeature->rect[k].weight * tr.width * tr.height;
              
                }
                 //rect[0].weight ,权重和特征矩形面积成反比
                 hidfeature->rect[0].weight = (int)(-sum0/area0);
                    
            } /* l */
        } /* j */
    }
    
};

uint64_t block1 = 0;
//uint64_t block2 = 0;
//==================================================================
//函数名:  RunHaarClassifierCascade
//作者:    qiurenbo
//日期:    2014-09-30
//功能:    在指定窗口范围计算特征
//输入参数:_cascade    级联分类器指针 
//            pt            检测窗口左上角坐标
//            start_stage 起始stage下标   
//返回值:  <=0            未检测到目标或参数有问题
//            1            成功检测到目标
//修改记录:
//====================================================================
int RunHaarClassifierCascade( HaarClassifierCascade* _cascade, Point& pt, int start_stage )
{
                           
    int result = -1;


    int p_offset, pq_offset;
    int i, j;
    _int64 rectsum, variance_factor;
    int variance_norm_factor;
    HidHaarClassifier* classifier;
    HidHaarTreeNode* node;
    int sum, t, a, b;
    int stage_sum;

/*    uint64_t start_time, end_time, overhead, cyclecountSet=0, cyclecountRun=0;
     //In the initialization portion of the code:
    TSCL = 0; //enable TSC
    start_time = _itoll(TSCH, TSCL);
    end_time = _itoll(TSCH, TSCL);
    overhead = end_time-start_time; //Calculating the overhead of the method.*/
    HidHaarClassifierCascade* hidCascade;

    if (_cascade == NULL)
        return -1;
  

    hidCascade = _cascade->hid_cascade;
    if( !hidCascade )
        return -1;
    

    //确保矩形的有效性,并防止计算窗口出边界
    if( pt.x < 0 || pt.y < 0 ||
        pt.x + _cascade->real_window_size.width >= hidCascade->sum->cols-2 ||
        pt.y + _cascade->real_window_size.height >= hidCascade->sum->rows-2 )
        return -1;


    //计算特征点在积分图中的偏移,相当于移动窗口
    p_offset = pt.y * (hidCascade->sum->cols) + pt.x;
    pq_offset = pt.y * (hidCascade->sqsum->cols) + pt.x;


    //计算移动后整个窗口的特征值
    rectsum = calc_sum(*hidCascade,p_offset);//*cascade->inv_window_area;
    variance_factor = hidCascade->pq0[pq_offset] - hidCascade->pq1[pq_offset] -
                           hidCascade->pq2[pq_offset] + hidCascade->pq3[pq_offset];
     variance_factor = (variance_factor - ((rectsum*rectsum*windowArea[hidCascade->window_area-324])>>16))*windowArea[hidCascade->window_area-324]>>16;
    //variance_norm_factor = int(sqrt(float(variance_factor))+0.5f);//qmath
    variance_norm_factor = shortSqrtTable[variance_factor];

    if( variance_norm_factor < 0 )
        variance_norm_factor = 1;

    //计算每个classifier的用到的特征区域的特征值

    for( i = start_stage; i < hidCascade->count; i++ )
    //for( i = start_stage; i < hidCascade->count; i++ )
    {
         stage_sum = 0;
        
    
        node = hidCascade->stage_classifier[i].classifier->node;
        classifier = hidCascade->stage_classifier[i].classifier;
        //if( hidCascade->stage_classifier[i].two_rects )
        //{
        for( j = 0; j < hidCascade->stage_classifier[i].count; j++ )
        {
            //start_time = _itoll(TSCH, TSCL);
            //classifier = hidCascade->stage_classifier[i].classifier + j;
            
            //start_time = _itoll(TSCH, TSCL);
            t = node->threshold*variance_norm_factor >> 10;
            //end_time = _itoll(TSCH, TSCL);
        //    block1 += end_time - start_time - overhead;
            
            //start_time = _itoll(TSCH, TSCL);
            //计算Haar特征    
            sum = calc_sum(node->feature.rect[0],p_offset) * node->feature.rect[0].weight >> 10;
            sum += calc_sum(node->feature.rect[1],p_offset) * node->feature.rect[1].weight >> 10;
        
        
            //两特征和三特征分开处理
            if( node->feature.rect[2].p0 )
                sum += calc_sum(node->feature.rect[2],p_offset) * node->feature.rect[2].weight >> 10;

            //end_time = _itoll(TSCH, TSCL);
            //block1 += end_time - start_time - overhead;
        //
            //a = classifier->alpha[0];
            //b = classifier->alpha[1];
            //start_time = _itoll(TSCH, TSCL);
            stage_sum += sum < t ? classifier->alpha[0] : classifier->alpha[1];
            //    end_time = _itoll(TSCH, TSCL);
            //    block2 += end_time - start_time - overhead
            node = (HidHaarTreeNode*)((char*)(node) + 80);
            classifier++;
        }
        
        if( stage_sum < hidCascade->stage_classifier[i].threshold )
        {
            
            return -i;
            
        }
    }
    
   //QueryPerformanceCounter(&t2);
   //printf("FeatureDetectTime:%fms\n",(t2.QuadPart - t1.QuadPart)*1000.0/tc.QuadPart);

  

    return 1;
}

//==================================================================
//函数名:  HaarDetectObjects
//作者:    qiurenbo
//日期:    2014-09-30
//功能:    在指定图片中查找目标
//输入参数: _img                图片指针        
//            cascade                级联分类器指针 
//            start_stage            起始stage下标 
//            scale_factor32x        窗口变化尺度倍数 /32
//            min_neighbors        最小临界目标(min_neighbors个以上的候选目标的区域才是最后的目标区域)
//            minSize                目标最小的大小
//返回值:  <=0                    未检测到目标或参数有问题
//            1                    成功检测到目标
//修改记录:
//====================================================================
void HaarDetectObjects(Image* _img,
                    HaarClassifierCascade* cascade,   //训练好的级联分类器
                    char* storage, int scale_factor32x,
                    int min_neighbors, int flags, Size minSize)
{
    
    
    //第一次分类用到的最大stage
    //第二次分类用到的起始stage
    int split_stage = 2;

   // ImgPtr stub, *img =  _img;
    Mat32        sum ;
    Mat64        sqsum;
    Image        tmp;

    //检测区域候选队列
    Sequence    seq;
    
    //结果候选恿?
    Sequence    seq2;
    
    //并查集合并序列
    Sequence comps;

    Rect r1;
    PTreeNode* node;
    int r1_neighbor;
    int j, flag = 1;
    Rect r2 ;
    int r2_neighbor;
    int distance;//cvRound( r2.rect.width * 0.2 );
    memset(&seq, 0, sizeof(Sequence));
    memset(&comps, 0, sizeof(Sequence));
    memset(&seq2, 0, sizeof(Sequence));
    memset(&result_seq, 0, sizeof(result_seq));

    int i;
    

    int factor32x;
    int npass = 2;

    if( !cascade )
       return ;


    //获取积分图和平方和积分图的矩阵
    GetMat(&sum , _img->rows + 1, _img->cols + 1, BITS32, 0);
    GetMat(&sqsum, _img->rows + 1, _img->cols + 1, BITS64, 0);
    GetMat(&tmp, _img->rows, _img->cols, BITS8, 1);

    //若不存在隐式积分图(用于加速计算),则创建一个
     if( !cascade->hid_cascade )
        CreateHidHaarClassifierCascade(cascade);


    //计算积分图
    Integral(_img, &sum, &sqsum);

    int count = 0;
    int count2 = 0;
    // In the variable declaration portion of the code:
    /*uint64_t start_time, end_time, overhead, cyclecountSet=0, cyclecountRun=0;
    // In the initialization portion of the code:
    TSCL = 0; //enable TSC
    start_time = _itoll(TSCH, TSCL);
    end_time = _itoll(TSCH, TSCL);
    overhead = end_time-start_time; //Calculating the overhead of the method.*/


    //不断调整窗口尺度,直到到达图像边缘(_img->cols-10) ||(_img->rows - 10)
    //并且确保尺度小于3倍(96)
    for( factor32x = 32; factor32x*cascade->orig_window_size.width < (_img->cols - 10)<<5 &&
        factor32x*cascade->orig_window_size.height < (_img->rows - 10)<<5
        &&factor32x<96;
    factor32x = (factor32x*scale_factor32x+16)>>5 )
    {
        
        const int ystep32x = MAX(64, factor32x);

        //调整搜索窗口尺度
        Size win_size;
        win_size.height = (cascade->orig_window_size.height * factor32x + 16)>>5;
        win_size.width = (cascade->orig_window_size.width * factor32x + 16 )>>5;
        
       //pass指扫描次数,stage_offset指第二次扫描时从第几个stage开始
        int pass, stage_offset = 0;
        
        //确保搜索窗口在尺度放大后仍然在图像中
        int stop_height =  ( ((_img->rows - win_size.height)<<5)+ (ystep32x>>1) ) / ystep32x;
        
        //确保搜索窗口大于目标的最小尺寸
        if( win_size.width < minSize.width || win_size.height < minSize.height )
            continue;
        //QueryPerformanceFrequency(&tc);
        //QueryPerformanceCounter(&t1);
        //根据尺度设置隐式级联分类器中的特征和权重,并设置这些特征在积分图中的位置,以加速运算
        
        // Code to be profiled
        //start_time = _itoll(TSCH, TSCL);
           SetImagesForHaarClassifierCascade(cascade, &sum, &sqsum, factor32x );
        //end_time = _itoll(TSCH, TSCL);
        //cyclecountSet = end_time-start_time-overhead;
        //QueryPerformanceCounter(&t2);
        //printf("SetImageFeatureRunTime:%fms\n",(t2.QuadPart - t1.QuadPart)*1000.0/tc.QuadPart);


        //设置粗检测所使用的起始分类器
        cascade->hid_cascade->count = split_stage;
    
        
        //用检测窗口扫描两遍图像:
        //第一遍通过级联两个stage粗略定位目标大致区域,对候选区域进行标定(利用tmp矩阵)
        //第二遍对标定的候选区域进行完整筛选,将候选区域放置到队列中
        for( pass = 0; pass < npass; pass++ )
        {

            for( int _iy = 0; _iy < stop_height; _iy++ )
            {    
                //检测窗口纵坐标步长为2,保持不变
                int iy = (_iy*ystep32x+16)>>5;
                int _ix, _xstep = 1;
                
                //stop_width是指_ix迭代的上限,_ix还要*ystep32x才是真正的窗口坐标
                int stop_width =( ((_img->cols - win_size.width)<<5) +ystep32x/2) / ystep32x;
                unsigned char* mask_row = tmp.imgPtr + tmp.cols* iy;
                
                
                for( _ix = 0; _ix < stop_width; _ix += _xstep )
                {
                    
                    //检测窗口横坐标按步长为4开始移动,若没有检测到目标,则改变下一次步长为2
                    int ix = (_ix*ystep32x+16)>>5; // it really should be ystep
                
                    //当前检测窗口左上角坐标
                    Point pt;
                    pt.x = ix;
                    pt.y = iy;

                    //粗略检测
                    if( pass == 0 )
                    {
                        
                        int result = 0;
                        _xstep = 2;
                    
                        //start_time = _itoll(TSCH, TSCL);
                        result = RunHaarClassifierCascade( cascade, pt, 0 );
                        //end_time = _itoll(TSCH, TSCL);
                        //cyclecountRun += end_time-start_time-overhead;
                        if( result > 0 )
                        {
                            if( pass < npass - 1 )
                                mask_row[ix] = 1;
                        
                        }
                        //没有检测到改变步长为2(看ix的值)
                        if( result < 0 )
                            _xstep = 1;
                    }
                    //第二次检测先前粗定位的坐标
                    else if( mask_row[ix] )
                    {
                        //start_time = _itoll(TSCH, TSCL);
                        int result = RunHaarClassifierCascade(cascade, pt, stage_offset);
                    //    end_time = _itoll(TSCH, TSCL);
                    //    cyclecountRun += end_time-start_time-overhead;
                        
                        //count2++;
                        //int result = 0;
                        if( result > 0 )
                        {
                            seq.rectQueue[seq.tail].height = win_size.height;
                            seq.rectQueue[seq.tail].width = win_size.width;
                            seq.rectQueue[seq.tail].x = ix;
                            seq.rectQueue[seq.tail].y = iy;
                            seq.total++;
                            seq.tail++;
                        }
                        else
                            mask_row[ix] = 0;
                        
                }
            }

        
        }

        //因为前两个stage在第一次检测的时候已经用过;
        //第二次检测的时候,从第3个stage开始进行完整的检测
        stage_offset = cascade->hid_cascade->count;
        cascade->hid_cascade->count = cascade->count;
        //cascade->hid_cascade->count = 15;
    }
 }

    //printf("The SetImage section took: %lld CPU cycles\n", cyclecountSet);
//    printf("The RunImage section took: %lld CPU cycles\n", cyclecountRun);
//    printf("The Block1 section took: %lld CPU cycles\n", block1);
//    printf("The Block2 section took: %lld CPU cycles\n", block2);

    if( min_neighbors != 0 )
    {
    
        //将候选目标按相似度构成并查集
        //返回值代表并查集树的个数
        int ncomp = SeqPartition(&seq);
    
        
        
        //对相邻候选区域进行累加,为计算平均边界做准备
        for( i = 0; i < seq.total; i++ )
        {
            r1 = seq.rectQueue[i];
            node = &PTreeNodes[i];
            while(node->parent)
                node = node->parent;
            int idx = (node - PTreeNodes);
           
            
            comps.neighbors[idx]++;
            
            comps.rectQueue[idx].x += r1.x;
            comps.rectQueue[idx].y += r1.y;
            comps.rectQueue[idx].width += r1.width;
            comps.rectQueue[idx].height += r1.height;
        }

        // 计算平均目标边界
        for( i = 0; i < seq.total; i++ )
        {
            int n = comps.neighbors[i];

            //只有满足最小临接的结果才是最终结果
            if( n >= min_neighbors )
            {
                Rect* rect = &seq2.rectQueue[seq2.tail];
                rect->x = (comps.rectQueue[i].x*2 + n)/(2*n);
                rect->y = (comps.rectQueue[i].y*2 + n)/(2*n);
                rect->width = (comps.rectQueue[i].width*2 + n)/(2*n);
                rect->height = (comps.rectQueue[i].height*2 + n)/(2*n);
                seq2.neighbors[seq2.tail] = comps.neighbors[i];
                seq2.tail++;
                seq2.total++;
            }
        }


        //从候选矩形中得到最大的矩形
        for( i = 0; i < seq2.total; i++ )
        {
            r1 = seq2.rectQueue[i];
            r1_neighbor = seq2.neighbors[i];
            flag = 1;
        
            for( j = 0; j < seq2.total; j++ )
            {
                r2 = seq2.rectQueue[j];
                r2_neighbor = seq2.neighbors[j];
                distance = (r2.width *2+5)/10;//cvRound( r2.rect.width * 0.2 );
                
                if( i != j &&
                    r1.x >= r2.x - distance &&
                    r1.y >= r2.y - distance &&
                    r1.x + r1.width <= r2.x + r2.width + distance &&
                    r1.y + r1.height <= r2.y + r2.height + distance &&
                    (r2_neighbor > MAX( 3, r1_neighbor ) || r1_neighbor < 3) )
                {
                    flag = 0;
                    break;
                }
            }
            
            if( flag )
            {
                result_seq.rectQueue[result_seq.tail] = r1;
                result_seq.tail++;
                result_seq.total++;
                
            }
        }
        
    }
    
}










void DownSample(Image* pImage, int factor)
{
    int i = 0;
    int j = 0;
    int counti = 0;
    int countj = 0;

    int step = pImage->cols / factor;
    for (i =0; i < pImage->rows; i+= factor)
    {
        countj++;
        for (j =0; j < pImage->cols; j += factor)
        {
            *(pImage->imgPtr + i*step/factor + j/factor) = *(pImage->imgPtr + i*pImage->cols + j);
            counti++;
        }
        counti = 0;
    }
    
    pImage->cols /= factor;
    pImage->rows /= factor;
}

 

OpenCV Haar AdaBoost源码改进据说是比EMCV快6倍

原文:http://www.cnblogs.com/zzuyczhang/p/4356305.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!