简单的极限,我们可以通过直接代入法求解,如:
我们知道我们在利用极限求导数时:
We say
f(x) is continuous atx0 when
limx→x0f(x)=f(x0)
Right-hand limit:
Left-hand limit:
If
limx→x+0f(x)=limx→x?0f(x) butthisisnot f(x_0),orif f(x_0)$ is undefined, we say the discontinuity isremovable
.
比如说
limx→x+0 for(x<x0 ) exists, andlimx→x?0 for(x>x0 )also exists, but they are NOT equal.
Right-hand limit:
Left-hand limit:
This function doesn’t even go to
±∞ — it doesn’t make sense to say it goes to anything. For something like this, we say the limit does not exist.
注意下面的表达式中
几何证明:
当上图中的角度
从上图中可以看出当角度变得越来越小时,
If
f is differentiable atx0 , thenf is continuous atx0 .
Proof:
单变量微积分(03):Limits and Continuity
原文:http://blog.csdn.net/cv_ronny/article/details/44522793