首页 > 其他 > 详细

[FollowUp] Combinations 组合项

时间:2015-03-23 08:15:11      阅读:241      评论:0      收藏:0      [点我收藏+]

 

这是 Combinations 组合项 的延伸,在这里,我们允许不同的顺序出现,那么新的题目要求如下:

Given two integers n and k, return all possible combinations of k numbers out of 1 ... n.

For example,
If n = 4 and k = 2, a solution is:

[
[1,2],
[1,3],
[1,4],
[2,1],
[2,3],
[2,4],
[3,1],
[3,2],
[3,4],
[4,1],
[4,2],
[4,3],
]

这题的解法其实只是在原题 Combinations 组合项 的基础上做很小的改动即可,这里我们为了避免重复项,引入了visited数字来标记某个数组是否出现过,然后就是递归中的循环不是从level开始,改为每次从0开始,这样就能把所有不同的排列方式都找出来,代码如下:

 

class Solution {
public:
    vector<vector<int> > combine(int n, int k) {
        vector<vector<int> > res;
        vector<int> out;
        vector<int> visited(n, 0);
        combineDFS(n, k, 0, visited, out, res);
        return res;
    }
    void combineDFS(int n, int k, int level, vector<int> &visited, vector<int> &out, vector<vector<int> > &res) {
        if (out.size() == k) res.push_back(out);
        else {
            for (int i = 0; i < n; ++i) {
                if (visited[i] == 0) {
                    visited[i] = 1;
                    out.push_back(i + 1);
                    combineDFS(n, k, level + 1, visited, out, res);
                    out.pop_back();
                    visited[i] = 0;
                }
            }
        }
    }
};

 

[FollowUp] Combinations 组合项

原文:http://www.cnblogs.com/grandyang/p/4358831.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!