首页 > 其他 > 详细

HDOJ 题目4602 Partition(找规律,快速幂)

时间:2015-03-23 09:42:31      阅读:251      评论:0      收藏:0      [点我收藏+]

Partition

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2635    Accepted Submission(s): 1052


Problem Description
Define f(n) as the number of ways to perform n in format of the sum of some positive integers. For instance, when n=4, we have
  4=1+1+1+1
  4=1+1+2
  4=1+2+1
  4=2+1+1
  4=1+3
  4=2+2
  4=3+1
  4=4
totally 8 ways. Actually, we will have f(n)=2(n-1) after observations.
Given a pair of integers n and k, your task is to figure out how many times that the integer k occurs in such 2(n-1) ways. In the example above, number 1 occurs for 12 times, while number 4 only occurs once.
 

Input
The first line contains a single integer T(1≤T≤10000), indicating the number of test cases.
Each test case contains two integers n and k(1≤n,k≤109).
 

Output
Output the required answer modulo 109+7 for each test case, one per line.
 

Sample Input
2 4 2 5 5
 

Sample Output
5 1
 

Source
 

Recommend
liuyiding   |   We have carefully selected several similar problems for you:  5193 5192 5191 5190 5189 
 

     1   2   3   4   5

1    1   2   5   12  28

2        1   2   5   12

3           1   2   5

4               1   2

5                    1

规律:2^(m-3)*(m-2). m=n-k+1

ac代码

#include<stdio.h>
#include<string.h>
#define mod 1000000007
__int64 qpow(__int64 a,__int64 b)
{
	__int64 ans=1;
	while(b)
	{
		if(b&1)
			ans=(ans*a)%mod;
		a=(a*a)%mod;
		b/=2;
	}
	return ans;
}
int main()
{
	int t;
	scanf("%d",&t);
	while(t--)
	{
		__int64 n,k;
		scanf("%I64d%I64d",&n,&k);
		if(k>n)
		{
			printf("0\n");
			continue;
		}
		if(n-k+1<=2)
		{
			printf("%d\n",n-k+1);
		}
		else
		{
			printf("%I64d\n",(qpow(2,n-k-2)*(n-k+3))%mod);
		}
	}
}


 

HDOJ 题目4602 Partition(找规律,快速幂)

原文:http://blog.csdn.net/yu_ch_sh/article/details/44539185

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!