Given a binary tree, check whether it is a mirror of itself (ie, symmetric around its center).
For example, this binary tree is symmetric:
1 / 2 2 / \ / 3 4 4 3
But the following is not:
1 / 2 2 \ 3 3
Note:
Bonus points if you could solve it both recursively and iteratively.
confused what "{1,#,2,3}"
means? >
read more on how binary tree is serialized on OJ.
The serialization of a binary tree follows a level order traversal, where ‘#‘ signifies a path terminator where no node exists below.
Here‘s an example:
1 / 2 3 / 4 5The above binary tree is serialized as
"{1,2,3,#,#,4,#,#,5}"
.class TreeNode{ int val; TreeNode left; TreeNode right; TreeNode(int x){val=x;} } public boolean isSymmetric(TreeNode root) { if(root==null) return true; if(treeIsSymmetric(root.left, root.right)) return true; return false; } public boolean treeIsSymmetric(TreeNode p,TreeNode q) { if(p==null&&q==null)//左右子树都为空时对称 return true; if(p==null||q==null)//左右子树有一个不为空时不对称 return false; //子树结点值相等,左孩子的结点值等于右孩子的结点值。。。 if(p.val==q.val&&treeIsSymmetric(p.left, q.right)&&treeIsSymmetric(p.right, q.left)) return true; return false; }
原文:http://blog.csdn.net/mnmlist/article/details/44591291