Given a binary tree, check whether it is a mirror of itself (ie, symmetric around its center).
For example, this binary tree is symmetric:
1 / 2 2 / \ / 3 4 4 3
But the following is not:
1 / 2 2 \ 3 3
Note:
Bonus points if you could solve it both recursively and iteratively.
confused what "{1,#,2,3}" means? >
read more on how binary tree is serialized on OJ.
The serialization of a binary tree follows a level order traversal, where ‘#‘ signifies a path terminator where no node exists below.
Here‘s an example:
1
/ 2 3
/
4
5
The above binary tree is serialized as "{1,2,3,#,#,4,#,#,5}".class TreeNode{
int val;
TreeNode left;
TreeNode right;
TreeNode(int x){val=x;}
}
public boolean isSymmetric(TreeNode root) {
if(root==null)
return true;
if(treeIsSymmetric(root.left, root.right))
return true;
return false;
}
public boolean treeIsSymmetric(TreeNode p,TreeNode q)
{
if(p==null&&q==null)//左右子树都为空时对称
return true;
if(p==null||q==null)//左右子树有一个不为空时不对称
return false;
//子树结点值相等,左孩子的结点值等于右孩子的结点值。。。
if(p.val==q.val&&treeIsSymmetric(p.left, q.right)&&treeIsSymmetric(p.right, q.left))
return true;
return false;
}原文:http://blog.csdn.net/mnmlist/article/details/44591291