首页 > 编程语言 > 详细

java中浮点数的比较(double, float)(转)

时间:2015-03-25 00:43:17      阅读:368      评论:0      收藏:0      [点我收藏+]

 

问题的提出:
如果我们编译运行下面这个程序会看到什么?

    public static void main(String args[]){
        System.out.println(0.05+0.01);
        System.out.println(1.0-0.42);
        System.out.println(4.015*100);
        System.out.println("BigDecimal:"+new BigDecimal(Double.toString(4.015)).multiply(new BigDecimal(Double.toString(100))));
        System.out.println(123.3/100);
    }

 

你没有看错!结果确实是
0.060000000000000005
0.5800000000000001
401.49999999999994
BigDecimal:401.5000
1.2329999999999999
Java中的简单浮点数类型float和double不能够进行运算。不光是Java,在其它很多编程语言中也有这样的问题。在大多数情况下,计算的结果是准确的,但是多试几次(可以做一个循环)就可以试出类似上面的错误。现在终于理解为什么要有BCD码了。
这个问题相当严重,如果你有9.999999999999元,你的计算机是不会认为你可以购买10元的商品的。
在有的编程语言中提供了专门的货币类型来处理这种情况,但是Java没有。现在让我们看看如何解决这个问题。
 
四舍五入
我们的第一个反应是做四舍五入。Math类中的round方法不能设置保留几位小数,我们只能象这样(保留两位):
public double round(double value){
    return Math.round(value*100)/100.0;
}
非常不幸,上面的代码并不能正常工作,给这个方法传入4.015它将返回4.01而不是4.02,如我们在上面看到的
4.015*100=401.49999999999994
因此如果我们要做到精确的四舍五入,不能利用简单类型做任何运算
java.text.DecimalFormat也不能解决这个问题:
System.out.println(new java.text.DecimalFormat("0.00").format(4.025));
输出是4.02
 
BigDecimal
在《Effective Java》这本书中也提到这个原则,float和double只能用来做科学计算或者是工程计算,在商业计算中我们要用 java.math.BigDecimal。BigDecimal一共有4个够造方法,我们不关心用BigInteger来够造的那两个,那么还有两个,它们是:
BigDecimal(double val) 
          Translates a double into a BigDecimal. 
BigDecimal(String val) 
          Translates the String repre sentation of a BigDecimal into a BigDecimal.
上面的API简要描述相当的明确,而且通常情况下,上面的那一个使用起来要方便一些。我们可能想都不想就用上了,会有什么问题呢?等到出了问题的时候,才发现上面哪个够造方法的详细说明中有这么一段:
Note: the results of this constructor can be somewhat unpredictable. One might assume that new BigDecimal(.1) is exactly equal to .1, but it is actually equal to .1000000000000000055511151231257827021181583404541015625. This is so because .1 cannot be represented exactly as a double (or, for that matter, as a binary fraction of any finite length). Thus, the long value that is being passed in to the constructor is not exactly equal to .1, appearances nonwithstanding. 
The (String) constructor, on the other hand, is perfectly predictable: new BigDecimal(".1") is exactly equal to .1, as one would expect. Therefore, it is generally recommended that the (String) constructor be used in preference to this one.
原来我们如果需要精确计算,非要用String来够造BigDecimal不可!在《Effective Java》一书中的例子是用String来够造BigDecimal的,但是书上却没有强调这一点,这也许是一个小小的失误吧。

 解决方案
现在我们已经可以解决这个问题了,原则是使用BigDecimal并且一定要用String来够造。
但是想像一下吧,如果我们要做一个加法运算,需要先将两个浮点数转为String,然后够造成BigDecimal,在其中一个上调用add方法,传入另一个作为参数,然后把运算的结果(BigDecimal)再转换为浮点数。你能够忍受这么烦琐的过程吗?下面我们提供一个工具类Arith来简化操作。它提供以下静态方法,包括加减乘除和四舍五入:
public static double add(double v1,double v2)
public static double sub(double v1,double v2)
public static double mul(double v1,double v2)
public static double div(double v1,double v2)
public static double div(double v1,double v2,int scale)
public static double round(double v,int scale)
附录
源文件Arith.java:
import java.math.BigDecimal;
/**
 * 由于Java的简单类型不能够精确的对浮点数进行运算,这个工具类提供精
 * 确的浮点数运算,包括加减乘除和四舍五入。
 */
public class Arith{
    //默认除法运算精度
    private static final int DEF_DIV_SCALE = 10;
    //这个类不能实例化
    private Arith(){
    }
 
    /**
     * 提供精确的加法运算。
     * @param v1 被加数
     * @param v2 加数
     * @return 两个参数的和
     */
    public static double add(double v1,double v2){
        BigDecimal b1 = new BigDecimal(Double.toString(v1));
        BigDecimal b2 = new BigDecimal(Double.toString(v2));
        return b1.add(b2).doubleValue();
    }
    /**
     * 提供精确的减法运算。
     * @param v1 被减数
     * @param v2 减数
     * @return 两个参数的差
     */
    public static double sub(double v1,double v2){
        BigDecimal b1 = new BigDecimal(Double.toString(v1));
        BigDecimal b2 = new BigDecimal(Double.toString(v2));
        return b1.subtract(b2).doubleValue();
    } 
    /**
     * 提供精确的乘法运算。
     * @param v1 被乘数
     * @param v2 乘数
     * @return 两个参数的积
     */
    public static double mul(double v1,double v2){
        BigDecimal b1 = new BigDecimal(Double.toString(v1));
        BigDecimal b2 = new BigDecimal(Double.toString(v2));
        return b1.multiply(b2).doubleValue();
    }
 
    /**
     * 提供(相对)精确的除法运算,当发生除不尽的情况时,精确到
     * 小数点以后10位,以后的数字四舍五入。
     * @param v1 被除数
     * @param v2 除数
     * @return 两个参数的商
     */
    public static double div(double v1,double v2){
        return div(v1,v2,DEF_DIV_SCALE);
    }
 
    /**
     * 提供(相对)精确的除法运算。当发生除不尽的情况时,由scale参数指
     * 定精度,以后的数字四舍五入。
     * @param v1 被除数
     * @param v2 除数
     * @param scale 表示表示需要精确到小数点以后几位。
     * @return 两个参数的商
     */
    public static double div(double v1,double v2,int scale){
        if(scale<0){
            throw new IllegalArgumentException(
                "The scale must be a positive integer or zero");
        }
        BigDecimal b1 = new BigDecimal(Double.toString(v1));
        BigDecimal b2 = new BigDecimal(Double.toString(v2));
        return b1.divide(b2,scale,BigDecimal.ROUND_HALF_UP).doubleValue();
    }
 
    /**
     * 提供精确的小数位四舍五入处理。
     * @param v 需要四舍五入的数字
     * @param scale 小数点后保留几位
     * @return 四舍五入后的结果
     */
    public static double round(double v,int scale){
        if(scale<0){
            throw new IllegalArgumentException(
                "The scale must be a positive integer or zero");
        }
        BigDecimal b = new BigDecimal(Double.toString(v));
        BigDecimal one = new BigDecimal("1");
        return b.divide(one,scale,BigDecimal.ROUND_HALF_UP).doubleValue();
    }
}

http://blog.csdn.net/pttaag/article/details/5912171

 

 

最近在项目中碰到了一个业务逻辑计算,代码如下(示例代码)

double val1 = ...;

double val2 = ...,

double dif = ...,

if (Math.abs(val1 - val2-dif) == 0){

  //do things

}

 

结果发现有一组数据:61.5,60.4,1.1无法达到正确的结果.有经验的开发人员一眼就可以发现问题所在,也知道应该采用如下的方式修改代码(产品模式下要进行代码的抽取和封装):

double exp = 10E-10;

if (Math.abs(val1 - val2-dif)>-1*exp && Math.abs(val1 - val2-dif)<exp){

 //do things

}

 

 

那为什么上面代码中"Math.abs(val1 - val2-dif) == 0"的值为什么会是false呢?这就引申到java的一个基础问题,即java中浮点数的存储机制.

Java 中的浮点数分为单精度和双精度数,也就是float和double.

float在内存中跟int一样,占4个字节,32 bit.

第1个bit表示符号,0表示正数,1表示负数,这个很好理解,不用多管.

第2-9个bit表示指数,一共8位(可以表示0-255),这里的底数是2,为了同时表示正数和负数,这里要减去127的偏移量.这样的话范围就是(-127到128),

另外全0和全1作为特殊处理,所以直接表示-126到127.

 

剩下的23位表示小数部分,这里23位表示了24位的数字,因为有一个默认的前导1(只有二进制才有这个特性).

 

     最后结果是:(-1)^(sign) * 1.f * 2^(exponent)

     这里:sign是符号位,f是23bit的小数部分,exponent是指数部分,最后表示范围是(因为正负数是对称的,这里只关心正数)

    2^(-126) ~~ 2(1-2^(-24)) * 2^127

    这个还不是float的取值范围,因为标准中还规定了非规格化表示法,另外还有一些特殊规定.

   

非规格化表示:

    当指数部分全0而且小数部分不全0时表示的是非规格化的浮点数,因为这里默认没有前导1,而是0.

    取值位0.f * 2^(-126),表示范围位 2^(-149)~~ (1-2^(-23)) * 2^(-126) 这里没有考虑符号.这里为什么是-126而不是-127? 如果是-127的话,那么最大表示为

2^(-127)-2^(-149),很显然2^(-127) ~~2^(-126) 就没法表示了.

 

 

其他特殊表示

    1.当指数部分和小数部分全为0时,表示0值,有+0和-0之分(符号位决定),0x00000000表示正0,0x80000000表示负0.

    2.指数部分全1,小数部分全0时,表示无穷大,有正无穷和负无穷,0x7f800000表示正无穷,0xff800000表示负无穷.

    3.指数部分全1,小数部分不全0时,表示NaN,分为QNaN和SNaN,Java中都是NaN.

 

结论:

    可以看出浮点数的取值范围是:2^(-149)~~(2-2^(-23))*2^127,也就是Float.MIN_VALUE和Float.MAX_VALUE.

 

References:

http://blog.csdn.net/treeroot/archive/2004/09/05/95071.aspx

http://hi.baidu.com/520miner/blog/item/698266ed9ee000d7b31cb1aa.html

http://blog.csdn.net/running8063/article/details/4093261

 

java中浮点数的比较(double, float)(转)

原文:http://www.cnblogs.com/softidea/p/4364290.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!