算法提高 最小方差生成树
时间限制:1.0s 内存限制:256.0MB
1<=U,V<=N<=50,N-1<=M<=1000,0<=W<=50。数据不超过5组。
题目分析:要求方差最小,就是要每条边(val - ave)^2的和最小,枚举所有边权和的可能值,多次kruskal求最小生成树,每次求的时候,以(val - ave)^2作为当前边的权值,如果该树的val和等于我们枚举的和,则修改ans的值,因为题目的数据量很小,复杂度大概为O(NWElogE)大概是1e7左右,基本可以接受
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
double const MAX = 10000000000000.0;
int fa[55], map[55][55];
int minv, maxv;
int n, m, cnt, a[55];
double ans;
struct Edge
{
int u, v, w;
double fw;
}e[55];
bool cmp(Edge a, Edge b)
{
return a.fw < b.fw;
}
bool cmp1(int a, int b)
{
return a > b;
}
void UF_set()
{
for(int i = 0; i < 55; i++)
fa[i] = i;
}
int Find(int x)
{
return x == fa[x] ? x : fa[x] = Find(fa[x]);
}
int Union(int a, int b)
{
int r1 = Find(a);
int r2 = Find(b);
if(r1 != r2)
fa[r2] = r1;
}
void Kruskal(int sum)
{
UF_set();
double fall = 0;
cnt = 0;
int all = 0;
double ave = (sum * 1.0) / ((n - 1) * 1.0);
for(int i = 0; i < m; i++)
e[i].fw = ((double)e[i].w - ave) * ((double)e[i].w - ave);
sort(e, e + m, cmp);
for(int i = 0; i < m; i++)
{
int u = e[i].u;
int v = e[i].v;
if(Find(u) != Find(v))
{
Union(u, v);
fall += e[i].fw;
all += e[i].w;
cnt++;
}
if(cnt == n - 1)
break;
}
if(all == sum)
ans = min(ans, fall);
}
int main()
{
int ca = 1;
while(scanf("%d %d", &n, &m) != EOF && (m + n))
{
minv = 0;
maxv = 0;
ans = MAX;
for(int i = 0; i < m; i++)
{
scanf("%d %d %d", &e[i].u, &e[i].v, &e[i].w);
a[i] = e[i].w;
}
sort(a, a + m);
for(int i = 0; i < n - 1; i++)
minv += a[i];
sort(a, a + m, cmp1);
for(int i = 0; i < n - 1; i++)
maxv += a[i];
for(int i = minv; i <= maxv; i++)
Kruskal(i);
printf("Case %d: %.2f\n", ca++, ans / (double) (n - 1));
}
}蓝桥杯练习题 最小方差生成树 (Kruskal MST 好题)
原文:http://blog.csdn.net/tc_to_top/article/details/44650537