首页 > 其他 > 详细

欧拉函数 hdu 1787

时间:2015-03-27 14:53:35      阅读:269      评论:0      收藏:0      [点我收藏+]

GCD Again

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2558    Accepted Submission(s): 1060


Problem Description
Do you have spent some time to think and try to solve those unsolved problem after one ACM contest?
No? Oh, you must do this when you want to become a "Big Cattle".
Now you will find that this problem is so familiar:
The greatest common divisor GCD (a, b) of two positive integers a and b, sometimes written (a, b), is the largest divisor common to a and b. For example, (1, 2) =1, (12, 18) =6. (a, b) can be easily found by the Euclidean algorithm. Now I am considering a little more difficult problem:
Given an integer N, please count the number of the integers M (0<M<N) which satisfies (N,M)>1.
This is a simple version of problem “GCD” which you have done in a contest recently,so I name this problem “GCD Again”.If you cannot solve it still,please take a good think about your method of study.
Good Luck!
 

Input
Input contains multiple test cases. Each test case contains an integers N (1<N<100000000). A test case containing 0 terminates the input and this test case is not to be processed.
 

Output
For each integers N you should output the number of integers M in one line, and with one line of output for each line in input.
 

Sample Input
2 4 0
 

Sample Output
0 1
 

Author
lcy
 

Source

欧拉函数 :公式:f(x)=x*(1-1/p1)*(1-1/p2)*(1-1/p3)....*(1-1/pn) pi都是x的质因子 

考查知识点:欧拉函数 
//考查知识点:欧拉函数 。。。
#include<stdio.h>
int urler(int n)
{
	int ans=n,i;
	int temp=1;
	for(i=2;i*i<=n;++i)//要是从2开始遍历到 n-1 容易tle 在此再次压缩 
	{
		if(n%i==0)
		{
			ans-=ans/i;//欧拉函数公式 f(x)=n*(1-1/p1)*(i-i/p2)...(1-1/pn); 
			while(n%i==0)// 
			n/=i; 
		}
	}
	if(n>1)//上面压缩了 i的取值范围,此处n!=1说明此时的n也是原来n的一个质因子 
	ans-=ans/n;
	return ans;
}
int main()
{
	int n;
	while(~scanf("%d",&n),n)
	{
		printf("%d\n",n-urler(n)-1);
	}
	return 0;
} 


欧拉函数 hdu 1787

原文:http://blog.csdn.net/ice_alone/article/details/44675313

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!