解题思路:
欧拉定理: 设平面图的顶点数,边数和面数分别为V,E, F则 V + F - E = 2;
本题要求平面数,即 F = E + 2 - V;
因此只需要求出顶点数和边数。顶点数除了输入的顶点还包括两条线段相交的交点,同样如果三点共线,则原来的一条边变成了两条边。
#include <iostream> #include <cstring> #include <cstdlib> #include <cstdio> #include <algorithm> #include <cmath> #include <queue> #include <set> #include <map> #define LL long long using namespace std; const int MAXN = 300 + 10; struct Point { double x, y; Point (double x = 0, double y = 0) : x(x), y(y) { } }; typedef Point Vector; Vector operator + (Vector A, Vector B) { return Vector(A.x + B.x, A.y + B.y); } Vector operator - (Vector A, Vector B) { return Vector(A.x - B.x, A.y - B.y); } Vector operator * (Vector A, double p) { return Vector(A.x * p, A.y * p); } Vector operator / (Vector A, double p) { return Vector(A.x / p, A.y / p); } const double eps = 1e-10; bool operator <(const Point& a, const Point& b) { return a.x < b.x || (a.x == b.x && a.y < b.y); } int dcmp(double x) { if(fabs(x) < eps) return 0; else return x < 0 ? -1 : 1; } bool operator == (const Point& a, const Point& b) { return dcmp(a.x - b.x) == 0 && dcmp(a.y - b.y) == 0; } double Dot(Vector A, Vector B) { return A.x * B.x + A.y * B.y; } double Cross(Vector A, Vector B) { return A.x * B.y - A.y * B.x; } Point GetLineIntersection(Point P, Vector V, Point Q, Vector w) { Vector u = P - Q; double t = Cross(w, u) / Cross(V, w); return P + V * t; } bool SegmentIntersection(Point a1, Point a2, Point b1, Point b2) { double c1 = Cross(a2 - a1, b1 - a1), c2 = Cross(a2 - a1, b2 - a1); double c3 = Cross(b2 - b1, a1 - b1), c4 = Cross(b2 - b1, a2 - b1); return dcmp(c1) * dcmp(c2) < 0 && dcmp(c3) * dcmp(c4) < 0; } bool OnSegment(Point p, Point a1, Point a2) { return dcmp(Cross(a1 - p, a2 - p)) == 0 && dcmp(Dot(a1 - p, a2 - p)) < 0; } Point P[MAXN], V[MAXN*MAXN]; int main() { int n, kcase = 1; while(scanf("%d", &n)!=EOF) { if(n == 0) break; for(int i=0;i<n;i++) { scanf("%lf%lf", &P[i].x, &P[i].y); V[i] = P[i]; } n--; int c = n, e = n; for(int i=0;i<n;i++) { for(int j=i+1;j<n;j++) { if(SegmentIntersection(P[i], P[i+1], P[j], P[j+1])) V[c++] = GetLineIntersection(P[i], P[i+1]-P[i], P[j], P[j+1]-P[j]); } } sort(V, V+c); c = unique(V, V+c) - V; for(int i=0;i<c;i++) { for(int j=0;j<n;j++) { if(OnSegment(V[i], P[j], P[j+1])) e++; } } printf("Case %d: There are %d pieces.\n", kcase++, e + 2 - c); } return 0; }
UVALA 3263 That Nice Euler Circuits(欧拉定理,判断线段相交)
原文:http://blog.csdn.net/moguxiaozhe/article/details/44675123